Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T00:43:16.120Z Has data issue: false hasContentIssue false

Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities

Published online by Cambridge University Press:  01 May 2009

I. SÁNCHEZ-CUBILLO
Affiliation:
Brain Damage Service Network, Hospital Aita Menni, Bilbao, Spain
J.A. PERIÁÑEZ*
Affiliation:
Department of Basic Psychology II, Universidad Complutense de Madrid, Madrid, Spain Alzheimer’s Disease Research Unit, CIEN Foundation-Reina Sofia Foundation, Madrid, Spain
D. ADROVER-ROIG
Affiliation:
Clinical Neuropsychology Research Group, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Department of Psychology, University of the Balearic Islands, Spain
J.M. RODRÍGUEZ-SÁNCHEZ
Affiliation:
Department of Psychiatry, Hospital Universitario Marques de Valdecilla, Santander, Spain
M. RÍOS-LAGO
Affiliation:
Alzheimer’s Disease Research Unit, CIEN Foundation-Reina Sofia Foundation, Madrid, Spain Department of Basic Psychology II, UNED, Madrid, Spain Brain Damage Service Network, Hosp. Beata Maria Ana, Madrid, Spain
J. TIRAPU
Affiliation:
Psychology Service, Clinica Ubarmin, Pamplona, Spain
F. BARCELÓ
Affiliation:
Clinical Neuropsychology Research Group, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Department of Psychology, University of the Balearic Islands, Spain
*
*Correspondence and reprint requests to: José A. Periáñez, Department of Basic Psychology II, Universidad Complutense de Madrid, Campus de Somosaguas, 28223 Madrid, Spain. E-mail: [email protected]

Abstract

The aim of this study was to clarify which cognitive mechanisms underlie Trail Making Test (TMT) direct and derived scores. A comprehensive review of the literature on the topic was carried out to clarify which cognitive factors had been related to TMT performance. Following the review, we explored the relative contribution from working memory, inhibition/interference control, task-switching ability, and visuomotor speed to TMT performance. Forty-one healthy old subjects participated in the study and performed a battery of neuropsychological tests including the TMT, the Digit Symbol subtest [Wechsler Adult Intelligence Scale (Third Version) (WAIS-III)], a Finger Tapping Test, the Digits Forward and Backward subtests (WAIS-III), Stroop Test, and a task-switching paradigm inspired in the Wisconsin Card Sorting Test. Correlation and regression analyses were used in order to clarify the joint and unique contributions from different cognitive factors to the prediction of TMT scores. The results suggest that TMT-A requires mainly visuoperceptual abilities, TMT-B reflects primarily working memory and secondarily task-switching ability, while B-A minimizes visuoperceptual and working memory demands, providing a relatively pure indicator of executive control abilities. (JINS, 2009, 15, 438–450.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AITB. (1944). Army Individual Test Battery. Manual of directions and scoring. Washington, DC: War Department, Adjutant General’s Office.Google Scholar
Arbuthnott, K. & Frank, J. (2000). Trail Making Test, part B as a measure of executive control: Validation using a set-switching paradigm. Journal of Clinical and Experimental Neuropsychology, 22, 518528.CrossRefGoogle ScholarPubMed
Baddeley, A.D. (1986). Working memory. Oxford, UK: Clarendon Press.Google ScholarPubMed
Barceló, F., Escera, C., Corral, M.J., & Periáñez, J.A. (2006). Task switching and novelty processing activate a common neural network for cognitive control. Journal of Cognitive Neuroscience, 18, 17341748.CrossRefGoogle ScholarPubMed
Barceló, F., Muñoz-Céspedes, J.M., Pozo, M.A., & Rubia, F.J. (2000). Attentional set shifting modulates the target P3b response in the Wisconsin Card Sorting Test. Neuropsychologia, 38, 13421355.CrossRefGoogle ScholarPubMed
Barceló, F., Periáñez, J.A., & Knight, R.T. (2002). Think differently: A brain orienting response to task novelty. Neuroreport, 13, 18871892.CrossRefGoogle ScholarPubMed
Chaytor, N., Schmitter-Edgecombe, M., & Burr, R. (2006). Improving the ecological validity of executive functioning assessment. Archives of Clinical Neuropsychology, 21, 217227.CrossRefGoogle ScholarPubMed
Corrigan, J.D. & Hinkeldey, N.S. (1987). Relationships between parts A and B of the Trail Making Test. Journal of Clinical Psychology, 43, 402409.3.0.CO;2-E>CrossRefGoogle Scholar
Crowe, S.F. (1998). The differential contribution of mental tracking, cognitive flexibility, visual search, and motor speed to performance on parts A and B of the Trail Making Test. Journal of Clinical Psychology, 54, 585591.3.0.CO;2-K>CrossRefGoogle Scholar
Ehrenstein, W.H., Heister, G., & Cohen, R. (1982). Trail Making Test and visual-search. Archiv für Psychiatrie und Nervenkrankheiten, 231, 333338.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle Scholar
Gaudino, E.A., Geisler, M.W., & Squires, N.K. (1995). Construct validity in the Trail Making Test: What makes Part B harder? Journal of Clinical and Experimental Neuropsychology, 17, 529535.CrossRefGoogle ScholarPubMed
Golden, C.J. (1994). Stroop: Test de colores y palabras. Madrid, Spain: TEA Ediciones.Google Scholar
González-Blanch, C., Álvarez-Jiménez, M., Rodríguez-Sánchez, J.M., Pérez-Iglesias, R., Vázquez-Barquero, J.L., & Crespo-Facorro, B. (2006). Cognitive functioning in the early course of first-episode schizophrenia spectrum disorders: Timing and patterns. European Archives of Psychiatry and Clinical Neuroscience, 256, 364371.CrossRefGoogle ScholarPubMed
Groff, M.G. & Hubble, L.M. (1981). A factor analytic investigation of the Trail Making Test. Clinical Neuropsychology, 3, 1113.Google Scholar
Jefferson, A.L., Wong, S., Bolen, E., Ozonoff, A., Green, R.C., & Stern, R.A. (2006). Cognitive correlates of HVOT performance differ between individuals with mild cognitive impairment and normal controls. Archives of Clinical Neuropsychology, 21, 405412.CrossRefGoogle ScholarPubMed
Koechlin, E. & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11, 229235.CrossRefGoogle ScholarPubMed
Kortte, K.B., Horner, M.D., & Windham, W.K. (2002). The Trail Making Test, part B: Cognitive flexibility or ability to maintain set? Applied Neuropsychology, 9, 106109.CrossRefGoogle ScholarPubMed
Kowalczyk, A., McDonald, S., Cranney, J., & McMahon, M. (2001). Cognitive flexibility in the normal elderly and in persons with dementia as measured by the written and oral Trail Making Tests. Brain Impairment, 2, 1121.CrossRefGoogle Scholar
Lamberty, G.J., Putnam, S.H., Chatel, D.M., Bieliauskas, L.A., & Adams, K.M. (1994). Derived Trail Making Test indices: A preliminary report. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 7, 230234.Google Scholar
Langenecker, S.A., Zubieta, J.K., Young, E.A., Akil, H., & Nielson, K.A. (2007). A task to manipulate attentional load, set-shifting, and inhibitory control: Convergent validity and test–retest reliability of the Parametric Go/No-Go Test. Journal of Clinical and Experimental Neuropsychology, 29, 842853.CrossRefGoogle ScholarPubMed
Larrabee, G.J. & Curtiss, G. (1995). Construct validity of various verbal and visual memory tests. Journal of Clinical and Experimental Neuropsychology, 17, 536547.CrossRefGoogle ScholarPubMed
Lezak, M.D. (1995). Executive functions and motor performance. In Lezak, M.D. (Ed.), Neuropsychological assessment (pp. 650685). New York: Oxford University Press.Google Scholar
Mahurin, R.K., Velligan, D.I., Hazleton, B., Mark Davis, J., Eckert, S., & Miller, A.L. (2006). Trail Making Test errors and executive function in schizophrenia and depression. The Clinical Neuropsychologist, 20, 271288.CrossRefGoogle ScholarPubMed
Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology. Learning, Memory, and Cognition, 22, 14231442.CrossRefGoogle Scholar
Miller, E.K. & Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202.CrossRefGoogle ScholarPubMed
Miner, T. & Ferraro, F.R. (1998). The role of speed of processing, inhibitory mechanisms, and presentation order in Trail-Making Test performance. Brain and Cognition, 38, 246253.CrossRefGoogle ScholarPubMed
Mitrushina, M.N., Boone, K.B., Razani, J., & D’Elia, L.F. (2005). Handbook of normative data for neuropsychological assessment. New York: Oxford University Press.Google Scholar
Monsell, S. (2005). The chronometrics of task-set control. In Duncan, J., Phillips, L., & McLeod, P. (Eds.), Measuring the mind: Speed, control, and age (pp. 161190). New York: Oxford University Press.CrossRefGoogle Scholar
Monsell, S. & Mizon, G.A. (2006). Can the task-cuing paradigm measure an endogenous task-set reconfiguration process? Journal of Experimental Psychology. Human Perception and Performance, 32, 493516.CrossRefGoogle ScholarPubMed
Norman, D. & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In Davidson, R., Schwartz, G., & Shapiro, D. (Eds.), Consciousness and self regulation: Advances in research and theory, Vol. 4 (pp. 118). New York: Plenum.Google Scholar
O’Donnell, J.P., Macgregor, L.A., Dabrowski, J.J., Oestreicher, J.M., & Romero, J.J. (1994). Construct validity of neuropsychological tests of conceptual and attentional abilities. Journal of Clinical Psychology, 50, 596600.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Olivera-Souza, R.D., Moll, J., Passman, L.J., Cunha, F.C., Paes, F., Adriano, M.V., Ignacio, F.A., & Marrocos, R.P. (2000). Trail making and cognitive set-shifting. Arquivos de Neuro-psiquiatria, 58, 826829.CrossRefGoogle ScholarPubMed
Periáñez, J.A. & Barceló, F. (2009). Updating sensory versus task representations during task-switching: Insights from cognitive brain potentials in humans. Neuropsychologia, 47(4), 11601172.CrossRefGoogle ScholarPubMed
Periáñez, J.A., Maestú, F., Barceló, F., Fernández, A., Amo, C., & Ortiz, T. (2004). Spatiotemporal brain dynamics during preparatory set shifting: MEG evidence. NeuroImage, 21, 687695.CrossRefGoogle ScholarPubMed
Periáñez, J.A., Ríos-Lago, M., Rodríguez-Sánchez, J.M., Adrover-Roig, D., Sánchez-Cubillo, I., Crespo-Facorro, B., Quemada, J.I., & Barceló, F. (2007). Trail Making Test in traumatic brain injury, schizophrenia, and normal ageing: Sample comparisons and normative data. Archives of Clinical Neuropsychology, 22, 433447.CrossRefGoogle ScholarPubMed
Rapport, M.D., Denney, C., DuPaul, G.J., & Gardner, M.J. (1994). Attention deficit disorder and methylphenidate: Normalization rates, clinical effectiveness, and response prediction in 76 children. Journal of the American Academy of Child and Adolescent Psychiatry, 33, 882893.CrossRefGoogle ScholarPubMed
Reitan, R.M. (1992). Trail Making Test: Manual for administration and scoring. Tucson, AZ: Reitan Neuropsychology Laboratory.Google Scholar
Ricker, J.H. & Axelrod, B.N. (1994). Analysis of an oral paradigm for the Trail Making Test. Assessment, 1, 4752.CrossRefGoogle ScholarPubMed
Ríos, M., Periáñez, J.A., & Muñoz-Céspedes, J.M. (2004). Attentional control and slowness of information processing after severe traumatic brain injury. Brain Injury, 18, 257272.CrossRefGoogle ScholarPubMed
Robins Wahlin, T.B., Backman, L., Wahlin, A., & Winblad, B. (1996). Trail Making Test performance in a community-based sample of healthy very old adults: Effects of age on completion time, but not on accuracy. Archives of Gerontology and Geriatrics, 22, 87102.CrossRefGoogle Scholar
Rodríguez-Sánchez, J.M., Pérez-Iglesias, R., González-Blanch, C., Pelayo-Terán, J.M., Mata, I., Martínez, O., Sánchez-Cubillo, I., Vázquez-Barquero, J.L., & Crespo-Facorro, B. (2008) 1-year follow-up study of cognitive function in first-episode non-affective psychosis. Schizophrenia Research, 104, 165174.CrossRefGoogle ScholarPubMed
Royan, J., Tombaugh, T.N., Rees, L., & Francis, M. (2004). The Adjusting-Paced Serial Addition Test (Adjusting-PSAT): Thresholds for speed of information processing as a function of stimulus modality and problem complexity. Archives of Clinical Neuropsychology, 19, 131143.CrossRefGoogle ScholarPubMed
Schear, J.M. & Sato, S.D. (1989). Effects of visual acuity and visual motor speed and dexterity on cognitive test performance. Archives of Clinical Neuropsychology, 4, 2532.CrossRefGoogle ScholarPubMed
Spikman, J.M., Kiers, H.A., Deelman, B.G., & van Zomeren, A.H. (2001). Construct validity of concepts of attention in healthy controls and patients with CHI. Brain and Cognition, 47, 446460.CrossRefGoogle ScholarPubMed
Strauss, E., Sherman, E.M.S., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary (3rd ed.). New York: Oxford University Press.Google Scholar
Tabachnick, B.G. & Fidell, L.S. (2007). Using multivariate statistics (5th ed.). Boston, MA: Pearson/Allyn & Bacon.Google Scholar
Wechsler, D. (1999). WAIS-III: Escala de inteligencia de Wechsler para adultos—III. Madrid, Spain: TEA Ediciones.Google Scholar