Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T09:10:27.416Z Has data issue: false hasContentIssue false

Confrontation naming does not add incremental diagnostic utility in MCI and Alzheimer's disease

Published online by Cambridge University Press:  01 July 2004

JULIE A. TESTA
Affiliation:
Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55901
ROBERT J. IVNIK
Affiliation:
Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55901 Mayo Alzheimer's Disease Research Center, Rochester, Minnesota 55901
BRADLEY BOEVE
Affiliation:
Mayo Alzheimer's Disease Research Center, Rochester, Minnesota 55901 Department of Neurology, Mayo Clinic, Rochester, Minnesota 55901
RONALD C. PETERSEN
Affiliation:
Mayo Alzheimer's Disease Research Center, Rochester, Minnesota 55901 Department of Neurology, Mayo Clinic, Rochester, Minnesota 55901
V. SHANE PANKRATZ
Affiliation:
Division of Biostatistics, Mayo Clinic, Rochester, Minnesota 55901
DAVID KNOPMAN
Affiliation:
Mayo Alzheimer's Disease Research Center, Rochester, Minnesota 55901 Department of Neurology, Mayo Clinic, Rochester, Minnesota 55901
ERIC TANGALOS
Affiliation:
Mayo Alzheimer's Disease Research Center, Rochester, Minnesota 55901 Division of Community Internal Medicine, Mayo Clinic, Rochester, Minnesota 55901
GLENN E. SMITH
Affiliation:
Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55901 Mayo Alzheimer's Disease Research Center, Rochester, Minnesota 55901

Abstract

As the incidence of dementia increases, there is a growing need to determine the diagnostic utility of specific neuropsychological tests in the early diagnosis of Alzheimer's disease (AD). In this study, the relative utility of Boston Naming Test (BNT) in the diagnosis of AD was examined and compared to the diagnostic utility of other neuropsychological measures commonly used in the evaluation of AD. Individuals with AD (n = 306), Mild Cognitive Impairment (MCI; n = 67), and cognitively normal subjects (n = 409) with at least 2 annual evaluations were included. Logistic regression analysis suggested that initial BNT impairment is associated with increased risk of subsequent AD diagnosis. However, this risk is significantly less than that imparted by measures of delayed recall impairments. A multivariate Cox proportional hazards regression analysis suggested that BNT impairment imparted no additional risk for subsequent AD diagnosis after delayed recall impairments were included in the model. Although BNT impairment occurred in all severity groups, it was ubiquitous only in moderate to severe dementia. Collectively these results suggest that although BNT impairments become more common as AD progresses, they are neither necessary for the diagnosis of AD nor particularly useful in identifying early AD. (JINS, 2004, 10, 504–512.)

Type
Research Article
Copyright
2004 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albert, M., Moss, M.B., Tanzi, R., & Jones, K. (2001). Preclinical prediction of AD using neuropsychological tests. Journal of the International Neuropsychological Society, 7, 631639.CrossRefGoogle Scholar
Appell, J., Kertesz, A., & Fisman, M. (1982). A study of language functioning in Alzheimer's disease. Brain and Language, 17, 7391.CrossRefGoogle Scholar
Bayles, K.A. (1982). Language function in senile dementia. Brain and Language, 16, 265280.CrossRefGoogle Scholar
Bayles, K.A. & Tomoeda, C.K. (1983). Confrontation naming impairment in dementia. Brain and Language, 19, 98114.CrossRefGoogle Scholar
Bayles, K.A. & Kaszniak, A.W. (1987). Communication and cognition in normal aging and dementia. Boston: College Hill/Little, Brown, and Company.
Bayles, K.A., Tomoeda, C.K., & Trosset, M.W. (1992). Relation of linguistic communication abilities of Alzheimer's patients to stage of disease. Brain and Language, 42, 454472.CrossRefGoogle Scholar
Bondi, M., Monsch, A., Galasko, D., Butters, N., Salmon, D., & Delis, D. (1994). Preclinical cognitive markers of dementia of the Alzheimer type. Neuropsychology, 8, 374384.CrossRefGoogle Scholar
Bondi, M.W., Salmon, D.P., Galasko, D., Thomas, R.G., & Thal, L.J. (1999). Neuropsychological function and apolipoprotein E genotype in the preclinical detection of Alzheimer's disease. Psychology of Aging, 14, 295303.CrossRefGoogle Scholar
Bowles, N.L., Obler, L.K., & Albert, M.L. (1987). Naming errors in healthy aging and dementia of the Alzheimer type. Cortex, 23, 519524.CrossRefGoogle Scholar
Bozoki, A., Giordani, B., Heidebrink, J.L., Berent, S., & Foster, N.L. (2001). Mild cognitive impairments predict dementia in nondemented elderly patients with memory loss. Archives of Neurology, 58, 411416.Google Scholar
Brookmeyer, R., Gray, S., & Kwas, C. (1998). Projections of Alzheimer's disease in the United Stated and the public health impact of delaying disease onset. American Journal of Public Health, 88, 13371342.CrossRefGoogle Scholar
Cerhan, J.H., Ivnik, R.J., Smith, G.E., Tangalos, E.C., Petersen, R.C., & Boeve, B.F. (2002). Diagnostic utility of letter fluency, category fluency, and fluency difference scores in Alzheimer's disease. Clinical Neuropsychology, 16, 3542.CrossRefGoogle Scholar
Collie, A. & Maruff, P. (2000). The neuropsychology of preclinical Alzheimer's disease and mild cognitive impairment. Neuroscience and Biobehavioral Reviews, 24, 365374.CrossRefGoogle Scholar
Elias, M.F., Beiser, A., Wolf, P.A., Au, R., White, R.F., & D'Agostino, R.B. (2000). The preclinical phase of Alzheimer disease: A 22-year prospective study of the Framingham cohort. Archives of Neurology, 57, 808813.CrossRefGoogle Scholar
Faber-Langendoen, K., Morris, J.C., Knesevich, J.W., LaBarge, E., Miller, J.P., & Berg, L. (1988). Aphasia in senile dementia of the Alzheimer type. Annals of Neurology, 23, 365370.CrossRefGoogle Scholar
Fisher, N.J., Rourke, B.P., & Bieliauskas, L.A. (1999). Neuropsychological subgroups of patients with Alzheimer's disease: An examinations of the first 10 years of CERAD data. Journal of Clinical and Experimental Neuropsychology, 21, 488518.CrossRefGoogle Scholar
Fletcher, R.H., Fletcher, S.W., & Wagner, E.H. (1996). Diagnosis. In Clinical epidemiology: The essentials (pp. 4275). Baltimore: Williams & Wilkins.
Hy, L.X. & Keller, D.M. (2000). Prevalence of AD among whites: A summary by levels of severity. Neurology, 55, 198204.CrossRefGoogle Scholar
Ivnik, R.J., Malec, J.F., Smith, G.E., Tangalos, E.G., & Petersen, R.C. (1996). Neuropsychological tests' norms above age 55: COWAT, BNT, MAE Token, WRAT–R Reading, AMNART, STROOP, TMT, and JLO. Clinical Neuropsychologist, 10, 262278.CrossRefGoogle Scholar
Ivnik, R.J., Malec, J.F., Smith., G.E., Tangalos, E.G., Petersen, R.C., Kokmen, E., & Kurland, L.T. (1992). Mayo's Older Americans Normative Studies: WMS–R norms for ages 56 to 94. Clinical Neuropsychologist, 6(Suppl.), 4881.CrossRefGoogle Scholar
Ivnik, R.J., Smith, G.E., Cerhan, J.H., Boeve, B.F., Tangalos, E.G., & Petersen, R.C. (2001). Understanding the diagnostic capabilities of cognitive tests. Clinical Neuropsychologist, 15, 114124.CrossRefGoogle Scholar
Ivnik, R.J., Smith, G.E., Petersen, R.C., Boeve, B.F., Kokmen, E., & Tangalos, E.G. (2000). Diagnostic accuracy of four approaches to interpreting neuropsychological test data. Neuropsychology, 14, 163177.CrossRefGoogle Scholar
Jacobs, D.M., Sano, M., Dooneief, G., Marder, K., Bell, K.L., & Stern, Y. (1995). Neuropsychological detection and characterization of preclinical Alzheimer's disease. Neurology, 45, 957962.CrossRefGoogle Scholar
Jacobson, M.W., Delis, D.C., Bondi, M.W., & Salmon, D.P. (2002). Do neuropsychological tests detect preclinical Alzheimer's disease: Individual-test versus cognitive-discrepancy score analyses. Neuropsychology, 16, 132139.CrossRefGoogle Scholar
Kaplan, E., Goodglass, H., & Weintraub, S. (1983). Boston Naming Test. Philadelphia: Lea & Febiger.
Kaszniak, A.W., Wilson, R.S., Fox, J.H., & Stebbins, G.T. (1986). Cognitive assessment in Alzheimer's disease: Cross-sectional and longitudinal perspectives. Canadian Journal of Neurological Science, 13, 420423.CrossRefGoogle Scholar
Katzman, R. & Fox, P.J. (1999). The worldwide impact of dementia: projections of prevalence and costs. In R. Mayeux & Y. Christen (Eds.), Epidemiology of Alzheimer's disease: From gene to prevention (pp. 117). Heidelberg, Germany: Springer-Verlag.
Kirshner, H.S., Webb, W.G., & Kelly, M.P. (1984). The naming disorder of dementia. Neuropsychologia, 22, 2330.CrossRefGoogle Scholar
Locascio, J.J., Growdon, J.H., & Corkin, S. (1995). Cognitive test performance in detecting, staging, and tracking Alzheimer's disease. Archives of Neurology, 52, 10871099.CrossRefGoogle Scholar
Lucas, J.A., Ivnik, R.J., Smith, G.E., Bohac, D.L., Tangalos, E.G., Graff-Radford, N.R., & Petersen, R.C. (1998). Mayo's older Americans normative studies: Category fluency norms. Journal of Clinical and Experimental Neuropsychology, 20, 194200.CrossRefGoogle Scholar
Malec, J.F., Ivnik, R.J., & Smith, G.E. (1993). Neuropsychology and normal aging. In R.W. Parks, R.F. Zec, & R.S. Wilson (Eds.), Neuropsychology of Alzheimer's disease and other dementias (pp. 81111). New York: Oxford University Press.
Martin, A., Brouwers, P., Lalonde, F., Cox, C., Teleska, P., Fedio, P., Foster, N.L., & Chase, T.N. (1986). Towards a behavioral typology of Alzheimer's patients. Journal of Clinical and Experimental Neuropsychology, 5, 594610.CrossRefGoogle Scholar
Masur, D.M., Fuld, P.A., Blau, A.D., Crystal, H., & Aronson, M.K. (1990). Predicting development of dementia in the elderly with the Selective Reminding Test. Journal of Clinical and Experimental Neuropsychology, 12, 529538.CrossRefGoogle Scholar
Masur, D.M., Sliwinski, M., Lipton, R.B., Blau, A.D., & Crystal, H.A. (1994). Neuropsychological prediction of dementia and the absence of dementia in healthy elderly persons. Neurology, 44, 14271432.CrossRefGoogle Scholar
Mattis, S. (1973). Mattis Dementia Rating Scale (MDRS). Odessa, Fl: Psychological Assessment Resources.
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 34, 939944.CrossRefGoogle Scholar
Monsch, A.U., Bondi, M.W., Butters, N., Salmon, D.P., Katzman, R., & Thal, L.J. (1992). Archives of Neurology, 49, 12531258.
Morris, J.C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43, 24122414.CrossRefGoogle Scholar
Nielsen, H., Lolk, A., Andersen, K., Andersen, J., & Kragh-Sørensen, P. (1999). Characteristics of elderly who develop Alzheimer's disease during the next two years—A neuropsychological study using CAMCOG. The Odense Study. International Journal of Geriatric Psychiatry, 14, 957963.3.0.CO;2-B>CrossRefGoogle Scholar
Petersen, R., Kokmen, E., Tangalos, E.G., Ivnik, R.J., & Kurland, L.T. (1990). Mayo Clinic's Alzheimer's Disease Patient Registry. Aging, 2, 408415.Google Scholar
Petersen, R., Smith, G., Ivnik, R., Kokmen, E., & Tangalos, E. (1994). Memory function in very early Alzheimer's disease. Neurology, 44, 867872.CrossRefGoogle Scholar
Petersen, R., Smith, G., Waring, S., Ivnik, R., Tangalos, E., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56, 303308.CrossRefGoogle Scholar
Rey, A. (1964). L'examen clinique en psychologie [The clinical examination in psychology]. Paris: Presses Universitaires de France.
Rubin, E., Storandt, M., Miller, P., Kinscherf, D., Grant, E., Morris, J., & Berg, L. (1998). A prospective study of cognitive function and onset of dementia in cognitively healthy elders. Archives of Neurology, 55, 395401.CrossRefGoogle Scholar
Sackett, D.L., Haynes, R.B., Guyatt, G.H., & Tugwell, P. (1991) The interpretation of diagnostic data. Clinical epidemiology: A basic science for clinical medicine (2nd ed.). Boston: Little, Brown & Company.
Salmon, D.P., Thomas, R.G., Pay, M.M., Booth, A., Hofstetter, C.R., Thal, L.J., & Katzman, R. (2002). Neurology, 7, 10221028.
Schenk, D. (2002). Amyloid-beta immunotherapy for Alzheimer's disease: The end of the beginning. National Review of Neuroscience, 3, 824828.CrossRefGoogle Scholar
Small, B.J., Fratiglioni, L., Viitanen, M., Winblad, B., & Bäckman, L. (2000). The course of cognitive impairment in preclinical Alzheimer disease. Archives of Neurology, 57, 839844.CrossRefGoogle Scholar
Smith, G.E., Cerhan, J.H., & Ivnik, R.J. (2003). Diagnostic validity. In D. Tulsky & D. Saaklofske (Eds.), Clinical interpretation of the WAIS–III and WMS–III. New York: Academic Press.
Soininen, H.S. & Scheltens, P. (1998). Early diagnostic indices for the prevention of Alzheimer's disease. Annals of Medicine, 30, 553559.CrossRefGoogle Scholar
Tierney, M., Szalai, J., Snow, W., Fisher, R., Nores, A., Nadon, G., Dunn, E., & St. George-Hyslop, P. (1996). Prediction of probable Alzheimer's disease in memory-impaired patients: A prospective longitudinal study. Neurology, 46, 661665.CrossRefGoogle Scholar
Wechsler, D. (1987). Wechsler Memory Scale–Revised. New York: The Psychological Corporation.
Williams, B.W., Mack, W., & Henderson, V.W. (1989). Boston Naming Test in Alzheimer's disease. Neuropsychologia, 27, 10731079.CrossRefGoogle Scholar