No CrossRef data available.
Article contents
53 Change in Cerebral Metabolite Concentrations Following Bariatric Surgery
Published online by Cambridge University Press: 21 December 2023
Abstract
Obesity is associated with adverse effects on brain health, including increased risk for neurodegenerative diseases. Changes in cerebral metabolism may underlie or precede structural and functional brain changes. While bariatric surgery is known to be effective in inducing weight loss and improving obesity-related medical comorbidities, few studies have examined whether it may be able to improve brain metabolism. In the present study, we examined change in cerebral metabolite concentrations in participants with obesity who underwent bariatric surgery.
35 patients with obesity (BMI > 35 kg/m2) were recruited from a bariatric surgery candidate nutrition class. They completed single voxel 1H-proton magnetic resonance spectroscopy at baseline (pre-surgery) and within one year post-surgery. Spectra were obtained from a large medial frontal brain region. Tissue-corrected absolute concentrations for metabolites including choline-containing compounds (Cho), myo-inositol (mI), N-acetylaspartate (NAA), creatine (Cr), and glutamate and glutamine (Glx) were determined using Osprey. Paired t-tests were used to examine within-subject change in metabolite concentrations, and correlations were used to relate these changes to other health-related outcomes, including weight loss and glycemic control.
Bariatric surgery was associated with a reduction in cerebral Cho (f[34j = -3.79, p < 0.001, d = -0.64) and mI (f[34] = -2.81, p < 0.01, d = -0.47) concentrations. There were no significant changes in NAA, Glx, or Cr concentrations. Reductions in Cho were associated with greater weight loss (r = 0.40, p < 0.05), and reductions in mI were associated with greater reductions in HbA1c (r = 0.44, p < 0.05).
Participants who underwent bariatric surgery exhibited reductions in cerebral Cho and mI concentrations, which were associated with improvements in weight loss and glycemic control. Given that elevated levels of Cho and mI have been implicated in neuroinflammation, reduction in these metabolites after bariatric surgery may reflect amelioration of obesity-related neuroinflammatory processes. As such, our results provide evidence that bariatric surgery may improve brain health and metabolism in individuals with obesity.
- Type
- Poster Session 05: Neuroimaging | Neurophysiology | Neurostimulation | Technology | Cross Cultural | Multiculturalism | Career Development
- Information
- Copyright
- Copyright © INS. Published by Cambridge University Press, 2023