Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T16:24:56.477Z Has data issue: false hasContentIssue false

18 Executive Dysfunction Following Treatment for Pediatric Low Grade Brain Tumors: Increased Risk Associated with Infratentorial Tumor Location

Published online by Cambridge University Press:  21 December 2023

Luz A De Leon*
Affiliation:
Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX, USA. Psychology Service, Texas Children’s Hospital, Houston, TX, USA.
Lisa E Mash
Affiliation:
Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX, USA. Psychology Service, Texas Children’s Hospital, Houston, TX, USA.
Sebastian R Espinoza
Affiliation:
Trinity University, San Antonio, TX, USA.
Kelley Parsons
Affiliation:
Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX, USA. Psychology Service, Texas Children’s Hospital, Houston, TX, USA.
Everett Adkins
Affiliation:
Rice University, Houston, TX, USA.
Cameron Martin
Affiliation:
Louisiana State University, Baton Rouge, LA, USA
Maheen Rizvi
Affiliation:
Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX, USA. Psychology Service, Texas Children’s Hospital, Houston, TX, USA.
Natasha Feuerbach
Affiliation:
Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX, USA. Psychology Service, Texas Children’s Hospital, Houston, TX, USA.
Marianne Macleod
Affiliation:
Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX, USA. Psychology Service, Texas Children’s Hospital, Houston, TX, USA.
Heather Stancel
Affiliation:
Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX, USA. Psychology Service, Texas Children’s Hospital, Houston, TX, USA.
Kimberly P Raghubar
Affiliation:
Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX, USA. Psychology Service, Texas Children’s Hospital, Houston, TX, USA.
Lisa S Kahalley
Affiliation:
Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX, USA. Psychology Service, Texas Children’s Hospital, Houston, TX, USA.
*
Correspondence: Luz De Leon Department of Pediatrics, Division of Psychology, Baylor College of Medicine Psychology Service, Texas Children’s Hospital [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

Treatment for pediatric brain tumors (PBTs) is associated with neurocognitive risk, including declines in IQ, executive function, and visual motor processing. Low grade tumors require less intensive treatment (i.e., focal radiotherapy (RT) or surgical resection alone), and have been associated with more favorable cognitive outcomes. However, these patients remain at risk of cognitive problems, which may present differently depending on tumor location. Executive functioning (EF), in particular, has been broadly associated with both frontal-subcortical networks (supratentorial) and the cerebellum (infratentorial). The current study examined intellectual functioning, executive functioning (set-shifting and inhibition), and visual motor skills in patients who were treated for low-grade tumors located in either the supratentorial or infratentorial region.

Participants and Methods:

Participants were survivors (age 8-18) previously treated with focal proton RT or surgery alone for infratentorial (n=21) or supratentorial (n=34) low grade glioma (83.6%) or low grade glioneuronal tumors (16.4%). Survivors >2.5 years post-treatment completed cognitive testing (WISC-IV/WAIS-IV; D-KEFS Verbal Fluency (VF), Color-Word Interference (CW), Trail Making Test (TM); Beery Visual-Motor Integration). We compared outcomes between infratentorial and supratentorial groups using analysis of covariance (ANCOVA). Demographic and clinical variables were compared using Welch’s t-tests. ANCOVAs were adjusted for age at evaluation, age at treatment, and history of posterior fossa syndrome due to significant or marginally significant differences between groups.

Results:

Tumor groups did not significantly differ with respect to sex (49.0% male), length of follow-up (M 4.4 years), or treatment type (74.5% surgery alone, 25.5% proton RT). Marginally significant group differences were found for age at evaluation (infratentorial M = 12.4y, supratentorial M = 14.1y, p = .054) and age at treatment (infratentorial M = 7.9y, supratentorial M = 9.7y, p =.074). Posterior fossa syndrome only occurred with infratentorial tumors (n=5, p = .003). Adjusting for covariates, the supratentorial group exhibited significantly superior performance on a measure of inhibition and set-shifting (CW Switching Time (t(32) = -2.05, p=.048, n2 =.11). There was a marginal group difference in the same direction on CW Inhibition Time (t(32 = -1.77, p = .086, n2 =.08). On the other hand, the supratentorial group showed significantly lower working memory than the infratentorial group (t(50) = 2.45, p = .018, n2 = .11), and trends toward lower verbal reasoning (t(50)=1.96, p = .056, n2 = .07) and full-scale IQ (t(50)=1.73, p = .090, n2 = .055). No other group differences were identified across intellectual, EF, and visualmotor measures.

Conclusions:

Infratentorial tumor location was associated with weaker switching and inhibition performance, while supratentorial tumor location was associated with lower performance on intellectual measures, particularly working memory. These findings suggest that even with relatively conservative treatment (i.e., focal proton RT or surgery alone), there remains neurocognitive risk in children treated for low-grade brain tumors. Moreover, tumor location may predict distinct patterns of long-term neurocognitive outcomes, depending on which brain networks are involved.

Type
Poster Session 01: Medical | Neurological Disorders | Neuropsychiatry | Psychopharmacology
Copyright
Copyright © INS. Published by Cambridge University Press, 2023