Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T13:41:08.603Z Has data issue: false hasContentIssue false

W-ALGEBRAS FROM HEISENBERG CATEGORIES

Published online by Cambridge University Press:  13 July 2016

Sabin Cautis
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, Canada ([email protected])
Aaron D. Lauda
Affiliation:
Department of Mathematics, University of Southern California, Los Angeles, CA, USA ([email protected])
Anthony M. Licata
Affiliation:
Mathematical Sciences Institute, Australian National University, Canberra, Australia ([email protected])
Joshua Sussan
Affiliation:
Department of Mathematics, CUNY Medgar Evers, Brooklyn, NY, USA ([email protected])

Abstract

The trace (or zeroth Hochschild homology) of Khovanov’s Heisenberg category is identified with a quotient of the algebra $W_{1+\infty }$. This induces an action of $W_{1+\infty }$ on the center of the categorified Fock space representation, which can be identified with the action of $W_{1+\infty }$ on symmetric functions.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbesfeld, N. and Schiffmann, O., A presentation of the deformed W 1+ algebra, Springer Proc. Math. Stat. 40 (2013), 113. arXiv:1209.0429.Google Scholar
Awata, H., Fukuma, M., Matsuo, Y. and Odake, S., Determinant formulae of quasi-finite representation of 𝓦1+ algebra at lower levels, Phys. Lett. B 332(3–4) (1994), 336344. arXiv:hep-th/9402001.Google Scholar
Beliakova, A., Guliyev, Z., Habiro, K. and Lauda, A., Trace as an alternative decategorification functor, Preprint, 2014, arXiv:1409.1198.Google Scholar
Beliakova, A., Habiro, K., Lauda, A. and Webster, B., Current algebras and categorified quantum groups, Preprint, 2014, arXiv:1412.1417.Google Scholar
Beliakova, A., Habiro, K., Lauda, A. and Zivkovic, M., Trace decategorification of categorified quantum sl2 , Acta Math. Vietnam. 39(4) 425480. arXiv:1404.1806.Google Scholar
Cautis, S., Rigidity in higher representation theory, Preprint, 2014, arXiv:1409.0827.Google Scholar
Cautis, S. and Licata, A., Vertex operators and 2-representations of quantum affine algebras, Preprint, 2011, arXiv:1112.6189.Google Scholar
Cautis, S. and Licata, A., Heisenberg categorification and Hilbert schemes, Duke Math. J. 161(13) (2012), 24692547. arXiv:1009.5147.Google Scholar
Cautis, S. and Sussan, J., On a categorical Boson–Fermion correspondence communications, Math. Phys. 336(2) (2015), 649669.Google Scholar
Etingof, P. and Oblomkov, A., Quantization, orbifold cohomology, and Cherednik Algebras, in Contemporary Mathematics, Volume 417 (American Mathematical Society, Providence, RI, 2006).Google Scholar
Frenkel, E., Kac, V., Radul, A. and Wang, W., W 1+ and W (gl N ) with central charge N , Comm. Math. Phys. 170 (2000), 337357.Google Scholar
Frenkel, E. and Reshetikhin, N., Quantum affine algebas and deformations of the Virasoro and W-algebras, Comm. Math. Phys. 178 (1996), 237264.Google Scholar
Frenkel, I. and Wang, W., Virasoro algebra and wreath product convolution, J. Algebra 242 (2001), 656671.Google Scholar
Geissinger, L., Hopf algebras of symmetric functions and class functions, in Combinatoire et representation du groupe symetrique, Lecture Notes in Mathematics, Volume 579, pp. 168181 (Springer, Strasbourg, 1977).Google Scholar
Hong, J. and Yacobi, O., Polynomial representations and categorifications of Fock space II, Adv. Math. 237 (2013), 360403.Google Scholar
Kac, V., Wang, W. and Yan, C., Quasifinite representations of classical Lie subalgebras of W 1+ , Adv. Math 139 (1998), 56140. arXiv:math.QA/9801136.Google Scholar
Khovanov, M., Heisenberg algebra and a graphical calculus, Fund. Math. 225 (2014), 169210. arXiv:1009.3295.Google Scholar
Khovanov, M. and Lauda, A., A diagrammatic approach to categorification of quantum groups III, Quantum Topol. 1(1) (2010), 192. arXiv:math.QA/0807.3250.Google Scholar
Morton, H. and Samuelson, P., The HOMFLYPT skein algebra of the torus and the elliptic Hall algebra, Preprint, 2014, arXiv:1410.0859.Google Scholar
Schiffmann, O. and Vasserot, E., Cherednik algebras, W-Algebras and the equivariant cohomology of the moduli space of instantons on A2 , Publ. Math. Inst. Hautes Études Sci. 118 (2013), 213342. arXiv:1202.2756.Google Scholar
Shan, P., Varagnolo, M. and Vasserot, E., On the center of quiver-Hecke algebras, Preprint, 2014, arXiv:1411.4392.Google Scholar
Solleveld, M., Homology of graded algebras, J. Algebra 323 (2010), 16221648. arXiv:0812.1661.Google Scholar
Wang, W., Vertex algebras and the class algebras of wreath products, Proc. Lond. Math. Soc. (3) 88 (2004), 381404.Google Scholar