Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T18:27:24.219Z Has data issue: false hasContentIssue false

TRUNCATED BARSOTTI–TATE GROUPS AND DISPLAYS

Published online by Cambridge University Press:  04 April 2016

Eike Lau
Affiliation:
Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany
Thomas Zink
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany

Abstract

We define truncated displays over rings in which a prime $p$ is nilpotent, we associate crystals to truncated displays, and we define functors from truncated displays to truncated Barsotti–Tate groups.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Illusie, L., Deformations de groupes de Barsotti–Tate (d’après A. Grothendieck), in Seminar on Arithmetic Bundles: The Mordell Conjecture, Astérisque, Volume 127, pp. 151198. (1985).Google Scholar
Lau, E., Displays and formal p-divisible groups, Invent. Math. 171 (2008), 617628.Google Scholar
Lau, E., Smoothness of the truncated display functor, J. Amer. Math. Soc. 26 (2013), 129165.Google Scholar
Lau, E., Relations between Dieudonné displays and crystalline Dieudonné theory, Algebra and Number Theory 8 (2014), 22012262.Google Scholar
Messing, W., The Crystals Associated to Barsotti–Tate Groups: With Applications to Abelian Schemes, Lecture Notes in Mathematics, Volume 264 (Springer, Berlin, Heidelberg, New York, 1972).Google Scholar
Milne, J., Étale Cohomology (Princeton University Press, Princeton, 1980).Google Scholar
Neeman, A., The derived category of an exact category, J. Algebra 135 (1990), 388394.Google Scholar
Thomason, R. and Trobaugh, T., Higher algebraic K-theory of schemes and of derived categories, in The Grothendieck Festschrift, Vol. III, Progress in Mathematics, Volume 88, pp. 247435 (Birkhäuser, Boston, 1990).Google Scholar
Zink, T., The display of a formal p-divisible group, Astérisque 278 (2002), 127248.Google Scholar