Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-06T04:51:44.121Z Has data issue: false hasContentIssue false

Ricci iterations on Kähler classes

Published online by Cambridge University Press:  30 January 2009

Julien Keller
Affiliation:
Centre de Mathématiques et Informatique, Université de Provence, 39 rue Frédéric Joliot-Curie, 13453 Marseille cedex 13, France ([email protected])

Abstract

In this paper we consider the dynamical system involved by the Ricci operator on the space of Kähler metrics of a Fano manifold. Nadel has defined an iteration scheme given by the Ricci operator and asked whether it has some non-trivial periodic points. First, we prove that no such periodic points can exist. We define the inverse of the Ricci operator and consider the dynamical behaviour of its iterates for a Fano Kähler–Einstein manifold. Then we define a finite-dimensional procedure to give an approximation of Kähler–Einstein metrics using this iterative procedure and apply it on ℂℙ2 blown up in three points.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Aubin, T., Réduction du cas positif de l'équation de Monge–Ampère sur les variétés kählériennes compactes à la démonstration d'une inégalité, J. Funct. Analysis 57 (1984), 143153.CrossRefGoogle Scholar
2.Aubin, T., Some nonlinear problems in Riemannian geometry (Springer, 1998).CrossRefGoogle Scholar
3.Bando, S., The K-energy map, almost Kähler–Einstein metrics and an inequality of the Miyaoka–Yau type, Tohoku Math. J. 39 (1987), 231235.CrossRefGoogle Scholar
4.Bando, S. and Mabuchi, T., Uniqueness of Kähler–Einstein metrics modulo connected group actions, in Algebraic Geometry, Sendai, 1985, pp. 1140, Advanced Studies in Pure Mathematics, Volume 10 (North-Holland, Amsterdam, 1987).CrossRefGoogle Scholar
5.Blocki, Z., The complex Monge–Ampère equation on compact Kähler manifolds, notes available at http://gamma.im.uj.edu.pl/~blocki/publ/ln/index.html (2007).Google Scholar
6.Chen, X. X. and Tian, G., Ricci flow on Kähler–Einstein surfaces, Invent. Math. 147 (2002), 487544.CrossRefGoogle Scholar
7.Dai, X., Liu, K. and Ma, X., On the asymptotic expansion of Bergman kernel, J. Diff. Geom. 72(1) (2006), 141.Google Scholar
8.Donaldson, S. K., Scalar curvature and projective embeddings, I, J. Diff. Geom. 59 (2001), 479522.Google Scholar
9.Donaldson, S. K., Scalar curvature and projective embeddings, II, Q. J. Math. 56 (2005), 345356.CrossRefGoogle Scholar
10.Donaldson, S. K., Some numerical results in complex differential geometry, preprint (available at arxiv.org/abs/math/0512625, 2005).Google Scholar
11.Doran, C., Headrick, M., Herzog, C. P., Kantor, J. and Wiseman, T., Numerical Kähler–Einstein metric on the third del Pezzo, Commun. Math. Phys. 282(2) (2008), 357393.CrossRefGoogle Scholar
12.Kolodziej, S., The complex Monge–Ampère equation and pluripotential theory, Memoirs of the American Mathematical Society, Volume 178 (American Mathematical Society, Providence, RI, 2005).Google Scholar
13.Liu, K. and Ma, X., A remark on ‘Some numerical results in complex differential geometry’ [arxiv.org/abs/math/0512625] by S. K. Donaldson, Math. Res. Lett. 14(2) (2007), 165171.CrossRefGoogle Scholar
14.Lu, Z., On the lower order terms of the asymptotic expansion of Tian–Yau?–Zelditch, Am. J. Math. 122 (2000), 235273.CrossRefGoogle Scholar
15.Luo, H., Geometric criterion for Gieseker–Mumford stability of polarized manifolds, J. Diff. Geom. 49 (1998), 577599.Google Scholar
16.Mabuchi, T., K-energy maps integrating Futaki invariants, Tohoku Math. J. 38 (1986), 575593.CrossRefGoogle Scholar
17.Nadel, A., On the absence of periodic points for the Ricci curvature operator acting on the space of Kähler metrics, in Modern Methods in Complex Analysis: Princeton Conference in Honor of Gunning and Kohn, Annals of Mathematics Studies, Volume 137 (Princeton University Press, 1995).Google Scholar
18.Pali, N., Characterization of Einstein–Fa no manifolds via the Kähler–Ricci flow, preprint arXiv:math/0607581v2 (2007).Google Scholar
19.Phong, D. H., Song, J., Sturm, J. and Weinkove, B., The Moser–Trudinger inequality on Kähler–Einstein manifolds, Am. J. Math. 130(4) (2008), 10671081.CrossRefGoogle Scholar
20.Rubinstein, Y., Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kahler metrics, Adv. Math. 218 (2008), 15261565.CrossRefGoogle Scholar
21.Siu, Y.-T., Lectures on Hermitian-Einstein metrics for stable bundles and Kähler–Einstein metrics (Birkhäuser, 1987).CrossRefGoogle Scholar
22.Song, J. and Weinkove, B., Energy functionals and canonical Kähler metrics, Duke Math. J. 137 (2007), 159184.CrossRefGoogle Scholar
23.Tian, G., On Kähler–Einstein metrics on certain Kähler manifolds with C 1(M) > 0, Invent. Math. 89 (1987), 225246.CrossRefGoogle Scholar
24.Tian, G., Canonical metrics in Kähler geometry, Lectures in Mathematics, ETH Zürich (Birkhäuser, 2000).CrossRefGoogle Scholar
25.Wang, X., Canonical metrics on stable vector bundles, Commun. Analysis Geom. 13(2) (2005), 253285.CrossRefGoogle Scholar
26.Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Commun. Pure Appl. Math. 31 (1978), 339411.CrossRefGoogle Scholar
27.Zhang, S., Heights and reductions of semi-stable varieties, Compositio Math. 104 (1996), 77105.Google Scholar