Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T10:53:21.479Z Has data issue: false hasContentIssue false

PRO CDH-DESCENT FOR CYCLIC HOMOLOGY AND $K$-THEORY

Published online by Cambridge University Press:  27 November 2014

Matthew Morrow*
Affiliation:
Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany ([email protected])http://www.math.uni-bonn.de/people/morrow/
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we prove that cyclic homology, topological cyclic homology, and algebraic $K$-theory satisfy a pro Mayer–Vietoris property with respect to abstract blow-up squares of varieties, in both zero and finite characteristic. This may be interpreted as the well-definedness of $K$-theory with compact support.

Type
Research Article
Copyright
© Cambridge University Press 2014 

References

André, M., Homologie des algèbres commutatives (Die Grundlehren der mathematischen Wissenschaften, Band 206) (Springer, Berlin, 1974).Google Scholar
Artin, M. and Mazur, B., Etale Homotopy (Lecture Notes in Mathematics, Volume 100) (Springer, Berlin, 1986). Reprint of the 1969 original.Google Scholar
Cortiñas, G., The obstruction to excision in K-theory and in cyclic homology, Invent. Math. 164(1) (2006), 143173.Google Scholar
Cortiñas, G., Haesemeyer, C., Schlichting, M. and Weibel, C., Cyclic homology, cdh-cohomology and negative K-theory, Ann. of Math. (2) 167(2) (2008), 549573.Google Scholar
Cortiñas, G., Haesemeyer, C., Walker, M. E. and Weibel, C., Bass’ NK groups and cdh-fibrant Hochschild homology, Invent. Math. 181(2) (2010), 421448.Google Scholar
Cortiñas, G., Haesemeyer, C., Walker, M. E. and Weibel, C., K-theory of cones of smooth varieties, J. Algebraic Geom. 22(1) (2013), 1334.Google Scholar
Cortiñas, G., Haesemeyer, C. and Weibel, C., K-regularity, cdh-fibrant Hochschild homology, and a conjecture of Vorst, J. Amer. Math. Soc. 21(2) (2008), 547561.Google Scholar
Cortiñas, G., Haesemeyer, C. and Weibel, C., Infinitesimal cohomology and the Chern character to negative cyclic homology, Math. Ann. 344(4) (2009), 891922.Google Scholar
Deligne, P., Théorie de Hodge II, Publ. Math. Inst. Hautes Études Sci. 40 (1971), 557.Google Scholar
Dundas, B. and Morrow, M., Finite generation and continuity of topological Hochschild and cyclic homology (2014), arXiv:1403.0534.Google Scholar
Geisser, T. and Hesselholt, L., Topological cyclic homology of schemes, in Algebraic K-Theory, Proceedings of an AMS-IMS-SIAM Summer Research Conference, Seattle, WA, USA, July 13–24, 1997, pp. 4187 (American Mathematical Society, Providence, RI, 1999).Google Scholar
Geisser, T. and Hesselholt, L., On the vanishing of negative K-groups, Math. Ann. 348(3) (2010), 707736.Google Scholar
Grothendieck, A., Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Publ. Math. Inst. Hautes Études Sci. 11 (1961), 5167.Google Scholar
Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publ. Math. Inst. Hautes Études Sci. 24 (1965), 5231.Google Scholar
Haesemeyer, C., Descent properties of homotopy K-theory, Duke Math. J. 125(3) (2004), 589620.Google Scholar
Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109203. ibid. (2) 79 (1964), 205–326.CrossRefGoogle Scholar
Isaksen, D. C., Calculating limits and colimits in pro-categories, Fund. Math. 175(2) (2002), 175194.Google Scholar
Kassel, C. and Sletsjøe, A. B., Base change, transitivity and Künneth formulas for the Quillen decomposition of Hochschild homology, Math. Scand. 70(2) (1992), 186192.Google Scholar
Kerz, M. and Saito, S., Chow group of 0-cycles with modulus and higher dimensional class field theory (2013), arXiv:1304.4400.Google Scholar
Krishna, A., On the negative K-theory of schemes in finite characteristic, J. Algebra 322(6) (2009), 21182130.Google Scholar
Krishna, A., An Artin–Rees theorem in K-theory and applications to zero cycles, J. Algebraic Geom. 19(3) (2010), 555598.Google Scholar
Lütkebohmert, W., On compactification of schemes, Manuscripta Math. 80(1) (1993), 95111.Google Scholar
Milne, J. S., Étale Cohomology (Princeton Mathematical Series, Volume 33) (Princeton University Press, Princeton, NJ, 1980).Google Scholar
Morrow, M., Pro unitality and pro excision in algebraic $K$-theory and cyclic homology (2014), arXiv:1404.4179.Google Scholar
Morrow, M., Zero cycles on singular varieties and their desingularisations (2014), arXiv:1404.4649.Google Scholar
Quillen, D., On the (co-) homology of commutative rings, in Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968), pp. 6587 (American Mathematical Society, Providence, RI, 1970).Google Scholar
Quillen, D. G., Homology of commutative rings, Unpublished MIT Notes (1968).Google Scholar
Ronco, M., On the Hochschild homology decompositions, Comm. Algebra 21(12) (1993), 46994712.Google Scholar
Rülling, K., The generalized de Rham–Witt complex over a field is a complex of zero-cycles, J. Algebraic Geom. 16(1) (2007), 109169.Google Scholar
Srinivas, V., Zero cycles on a singular surface. II, J. Reine Angew. Math. 362 (1985), 427.Google Scholar
Temkin, M., Desingularization of quasi-excellent schemes in characteristic zero, Adv. Math. 219(2) (2008), 488522.Google Scholar
Thomason, R. W., Les K-groupes d’un schéma éclaté et une formule d’intersection excédentaire, Invent. Math. 112(1) (1993), 195215.Google Scholar
Voevodsky, V., Homotopy theory of simplicial sheaves in completely decomposable topologies, J. Pure Appl. Algebra 214(8) (2010), 13841398.CrossRefGoogle Scholar
Weibel, C., Cyclic homology for schemes, Proc. Amer. Math. Soc. 124(6) (1996), 16551662.Google Scholar
Weibel, C., The negative K-theory of normal surfaces, Duke Math. J. 108(1) (2001), 135.Google Scholar
Weibel, C., K-theory and analytic isomorphisms, Invent. Math. 61(2) (1980), 177197.Google Scholar
Weibel, C., An Introduction to Homological Algebra (Cambridge Studies in Advanced Mathematics, Volume 38) (Cambridge University Press, Cambridge, 1994).Google Scholar
Weibel, C. and Geller, S. C., Étale descent for Hochschild and cyclic homology, Comment. Math. Helv. 66(3) (1991), 368388.Google Scholar