Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T01:12:16.807Z Has data issue: false hasContentIssue false

ON PROJECTIVE MANIFOLDS WITH PSEUDO-EFFECTIVE TANGENT BUNDLE

Published online by Cambridge University Press:  25 January 2021

Genki Hosono
Affiliation:
Mathematical Institute, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai980-8578, Japan ([email protected], [email protected])
Masataka Iwai
Affiliation:
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Tokyo, 153-8914, Japan ([email protected], [email protected])
Shin-ichi Matsumura
Affiliation:
Mathematical Institute, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai980-8578, Japan ([email protected], [email protected])

Abstract

In this paper, we develop the theory of singular Hermitian metrics on vector bundles. As an application, we give a structure theorem of a projective manifold X with pseudo-effective tangent bundle; X admits a smooth fibration $X \to Y$ to a flat projective manifold Y such that its general fibre is rationally connected. Moreover, by applying this structure theorem, we classify all the minimal surfaces with pseudo-effective tangent bundle and study general nonminimal surfaces, which provide examples of (possibly singular) positively curved tangent bundles.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atiyah, M. F., Complex fibre bundles and ruled surfaces , Proc. Lond. Math. Soc. (3) 5 (1955), 407434.Google Scholar
Atiyah, M. F., Vector bundles over an elliptic curve, Proc. Lond . Math. Soc. (3) 7 (1957), 414452.Google Scholar
Boucksom, S., Demailly, J.-P., Păun, M. Peternell, T., The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22(2) (2013), 201248.CrossRefGoogle Scholar
Beauville, A., Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), 755782.Google Scholar
Bauer, T., Kovács, S. J., Küronya, A., Mistretta, E. C., Szemberg, T. and Urbinati, S., On positivity and base loci of vector bundles , Eur. J. Math. 1(2) (2015), 229249.CrossRefGoogle Scholar
Blanc, J., ‘Finite subgroups of the Cremona group of the plane’, Autumn School in Algebraic Geometry, Lukecin, Poland, 2012, https://www.mimuw.edu.pl/~jarekw/EAGER/pdf/FiniteSubgroupsCremona.pdf. Google Scholar
Bando, S. and Siu, Y.-T., Stable Sheaves and Einstein-Hermitian Metrics, Geometry and Analysis on Complex Manifolds, 3950 (World Scientific Publishing, River Edge, NJ, 1994).Google Scholar
Campana, F., Connexité rationnelle des variétés de Fano, Ann. Sci. Éc. Norm. Supér. (4) 25(5) (1992), 539545.Google Scholar
Cao, J., Albanese maps of projective manifolds with nef anticanonical bundles, Ann. Sci. Éc. Norm. Supér. (4), 52(5) (2019), 11371154.Google Scholar
Campana, F., Cao, J. and Matsumura, S., ‘Projective klt pairs with nef anti-canonical divisor’, Algebr. Geom. (2021), to appear, https://arxiv.org/abs/1910.06471.Google Scholar
Cao, J. and Höring, A., A decomposition theorem for projective manifolds with nef anticanonical bundle, J. Algebraic Geom. 28 (2019), 567597.CrossRefGoogle Scholar
Cao, J. and Pǎun, M., Kodaira dimension of algebraic fiber spaces over abelian varieties , Invent. Math. 207(2) (2017), 169187.Google Scholar
Campana, F. and Peternell, T., Projective manifolds whose tangent bundles are numerically effective, Math. Ann. 289 (1991), 169187.CrossRefGoogle Scholar
Demailly, J.-P., Analytic Methods in Algebraic Geometry, Surveys of Modern Mathematics, 1 (International Press, Somerville, Higher Education Press, Beijing, 2012).Google Scholar
Dolgachev, I. V. and Iskovskikh, V. A., Finite subgroups of the plane Cremona group, in Algebra, Arithmetic, and Geometry . 1, pp. 443548 (Birkhuser Boston, Boston, 2009).CrossRefGoogle Scholar
Demailly, J-P., Peternell, T. and Schneider, M.. Pseudo-effective line bundles on compact Kähler manifolds, Internat . J. Math. 12(6) (2001), 689741.Google Scholar
Demailly, J.-P., Peternell, T., and Schneider, M., Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3(2) (1994), 295345.Google Scholar
Ejiri, S., Iwai, M. and Matsumura, S., ‘On asymptotic base loci of relative anti-canonical divisors of algebraic fiber spaces’, Preprint, 2020, https://arxiv.org/abs/2005.04566v1.Google Scholar
Graber, T., Harris, J. and Starr, J., Families of rationally connected varieties, J. Amer. Math. Soc. 16(1) (2003), 5767.Google Scholar
Hartshorne, R., Ample Subvarieties of Algebraic Varieties, Notes written in collaboration with C. Musili, Lecture Notes in Mathematics, 156 (Springer-Verlag, Berlin, 1970).CrossRefGoogle Scholar
Hartshorne, R., Stable reflexive sheaves, Math. Ann. 254(2) (1980), 121176.Google Scholar
Höring, A., Liu, J. and Shao, F., ‘Examples of Fano manifolds with non-pseudoeffective tangent bundle’, Preprint, 2020, https://arxiv.org/abs/2003.09476v1.Google Scholar
Höring, A., Uniruled varieties with split tangent bundle, Math. Z. 256(3) (2007), 465479.Google Scholar
Hosono, G., Approximations and examples of singular hermitian metrics on vector bundles, Ark. Mat. 55(1) (2017), 131153.Google Scholar
Hacon, C., Popa, M. and Schnell, C., Algebraic fiber spaces over abelian varieties: around a recent theorem by Cao and Pǎun, in Local and Global Methods in Algebraic Geometry, Contemporary Mathematics, 712, pp. 143195, (American Mathematical Society, Providence, RI, 2018).CrossRefGoogle Scholar
Howard, A., Smyth, B. and Wu, H., On compact Kähler manifolds of nonnegative bisectional curvature I and II, Acta Math. 147(1–2) (1981), 5170.CrossRefGoogle Scholar
Iwai, M., ‘Characterization of pseudo-effective vector bundles by singular hermitian metrics’, Michigan Math. J. (2021), to appear, https://arxiv.org/abs/1804.02146v2.Google Scholar
Kollár, J., Miyaoka, Y. and Mori, S., Rationally connected varieties, J. Algebraic Geom. 1(3) (1992), 429448.Google Scholar
Matsumura, S., ‘On the image of MRC fibrations of projective manifolds with semi-positive holomorphic sectional curvature’, Pure Appl. Math. Q. (2021), to appear, https://arxiv.org/abs/1801.09081v1.Google Scholar
Matsumura, S., ‘On projective manifolds with semi-positive holomorphic sectional curvature’, Amer. J. Math. (2021), to appear, https://arxiv.org/abs/1811.04182v1.Google Scholar
Mok, N., The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Differential Geom. 27(2) (1988), 179214.CrossRefGoogle Scholar
Mori, S., Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110(3) (1979), 593606.CrossRefGoogle Scholar
Muõz, R., Occhetta, G., Solá Conde, L. D., Watanabe, K. and Wiśniewski, J. A., A survey on the Campana-Peternell conjecture, Rend. Istit. Mat. Univ. Trieste 47 (2015), 127185.Google Scholar
Noboru, N., Zariski-Decomposition and Abundance, MSJ Memoirs, 14 (Mathematical Society of Japan, Tokyo, 2004).Google Scholar
Păun, M. and Takayama, S., Positivity of twisted relative pluricanonical divisors and their direct images, J. Algebraic Geom. 27 (2018), 211272.CrossRefGoogle Scholar
Raufi, H., Singular hermitian metrics on holomorphic vector bundles, Ark. Mat. 53(2) (2015), 359382.Google Scholar
Suwa, T., On ruled surfaces of genus 1, J. Math. Soc. Japan 21 (1969), 291311.CrossRefGoogle Scholar
Siu, Y.-T. and Yau, S.-T., Compact Kähler manifolds of positive bisectional curvature, Invent. Math. 59(2) (1980), 189204.Google Scholar
Wu, X., ‘Pseudo-effective and numerically flat reflexive sheaves’, Preprint, 2020, https://arxiv.org/abs/2004.14676v2.Google Scholar