No CrossRef data available.
Article contents
ON NONCRITICAL GALOIS REPRESENTATIONS
Published online by Cambridge University Press: 22 July 2021
Abstract
We propose a conjecture that the Galois representation attached to every Hilbert modular form is noncritical and prove it under certain conditions. Under the same condition we prove Chida, Mok and Park’s conjecture that Fontaine-Mazur L-invariant and Teitelbaum-type L-invariant coincide with each other.
Keywords
MSC classification
- Type
- Research Article
- Information
- Journal of the Institute of Mathematics of Jussieu , Volume 22 , Issue 1 , January 2023 , pp. 383 - 420
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline1.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline2.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline3.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline4.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline5.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline6.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline7.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline8.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline9.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline10.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline11.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline12.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline13.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline14.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline15.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline16.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline17.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline18.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline19.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline20.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline21.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline22.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline23.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline24.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230308034819544-0609:S1474748021000268:S1474748021000268_inline25.png?pub-status=live)