Article contents
ON FORMAL DEGREES OF UNIPOTENT REPRESENTATIONS
Published online by Cambridge University Press: 19 March 2021
Abstract
Let G be a reductive p-adic group which splits over an unramified extension of the ground field. Hiraga, Ichino and Ikeda [24] conjectured that the formal degree of a square-integrable G-representation
$\pi $
can be expressed in terms of the adjoint
$\gamma $
-factor of the enhanced L-parameter of
$\pi $
. A similar conjecture was posed for the Plancherel densities of tempered irreducible G-representations.
We prove these conjectures for unipotent G-representations. We also derive explicit formulas for the involved adjoint
$\gamma $
-factors.
- Type
- Research Article
- Information
- Journal of the Institute of Mathematics of Jussieu , Volume 21 , Issue 6 , November 2022 , pp. 1947 - 1999
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221127095214609-0798:S1474748021000062:S1474748021000062_inline5.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221127095214609-0798:S1474748021000062:S1474748021000062_inline6.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221127095214609-0798:S1474748021000062:S1474748021000062_inline7.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221127095214609-0798:S1474748021000062:S1474748021000062_inline8.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221127095214609-0798:S1474748021000062:S1474748021000062_inline9.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221127095214609-0798:S1474748021000062:S1474748021000062_inline10.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221127095214609-0798:S1474748021000062:S1474748021000062_inline11.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221127095214609-0798:S1474748021000062:S1474748021000062_inline12.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221127095214609-0798:S1474748021000062:S1474748021000062_inline13.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221127095214609-0798:S1474748021000062:S1474748021000062_inline14.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221127095214609-0798:S1474748021000062:S1474748021000062_inline15.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221127095214609-0798:S1474748021000062:S1474748021000062_inline16.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221127095214609-0798:S1474748021000062:S1474748021000062_inline17.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20221127095214609-0798:S1474748021000062:S1474748021000062_inline18.png?pub-status=live)
- 3
- Cited by