Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T01:23:36.404Z Has data issue: false hasContentIssue false

$\mathbb{A}_{\text{inf}}$ IS INFINITE DIMENSIONAL

Published online by Cambridge University Press:  11 May 2020

Jaclyn Lang
Affiliation:
LAGA, UMR 7539, CNRS, Université Paris 13 - Sorbonne Paris Cité, Université Paris 8, France ([email protected])
Judith Ludwig
Affiliation:
IWR, University of Heidelberg, Im Neuenheimer Feld 205, 69120Heidelberg, Germany ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Given a perfect valuation ring $R$ of characteristic $p$ that is complete with respect to a rank-1 nondiscrete valuation, we show that the ring $\mathbb{A}_{\inf }$ of Witt vectors of $R$ has infinite Krull dimension.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2020. Published by Cambridge University Press

References

Arnold, J. T., Krull dimension in power series rings, Trans. Amer. Math. Soc. 177 (1973), 299304.10.1090/S0002-9947-1973-0316451-8CrossRefGoogle Scholar
Bhatt, B., Specializing varieties and their cohomology from characteristic 0 to characteristic p, in Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., Volume 97, pp. 4388 (American Mathematical Society, Providence, RI, 2018).10.1090/pspum/097.2/01699CrossRefGoogle Scholar
Bhatt, B., Morrow, M. and Scholze, P., Integral p-adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 128 (2018), 219397.10.1007/s10240-019-00102-zCrossRefGoogle Scholar
Fargues, L. and Fontaine, J.-M., Courbes et fibrés vectoriels en théorie de Hodge p-adique, Astérisque 406 (2018), xiii+382 pp.Google Scholar
Kedlaya, Kiran, Some ring-theoretic properties of $\mathbb{A}_{\text{inf}}$ , preprint, 2018, arXiv:1602.09016v3.Google Scholar