Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-16T09:27:05.564Z Has data issue: false hasContentIssue false

Invariant valuations on quaternionic vector spaces

Published online by Cambridge University Press:  24 January 2012

Andreas Bernig
Affiliation:
Institut für Mathematik, Goethe-Universität Frankfurt, Robert-Mayer-Strasse 10, 60054 Frankfurt, Germany ([email protected])

Abstract

The spaces of Sp(n)-, Sp(n) · U(1)- and Sp(n) · Sp(1)-invariant, translation-invariant, continuous convex valuations on the quaternionic vector space ℍn are studied. Combinatorial dimension formulae involving Young diagrams and Schur polynomials are proved.

MSC classification

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Abardia, J., Geometria integral en espais de curvatura holomorfa constant, PhD Thesis, Universitat Autònoma de Barcelona (2009).Google Scholar
2.Abardia, J., Gallego, E. and Solanes, G., Gauss–Bonnet theorem and Crofton type formulas in complex space forms, Israel J. Math., in press.Google Scholar
3.Alesker, S., Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture, Geom. Funct. Analysis 11(2) (2001), 244272.CrossRefGoogle Scholar
4.Alesker, S., Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations, J. Diff. Geom. 63(1) (2003), 6395.Google Scholar
5.Alesker, S., The multiplicative structure on continuous polynomial valuations, Geom. Funct. Analysis 14(1) (2004), 126.CrossRefGoogle Scholar
6.Alesker, S., SU(2)-invariant valuations, in Papers from the Israel Geometric Aspects of Functional Analysis (GAFA) Seminar, 2002–2003 (ed. Milman, V. D. et al. ), Lecture Notes in Mathematics, Volume 1850, pp. 2129 (Springer, 2004).Google Scholar
7.Alesker, S., Valuations on convex sets, non-commutative determinants, and pluripotential theory, Adv. Math. 195(2) (2005), 561595.CrossRefGoogle Scholar
8.Alesker, S., Theory of valuations on manifolds, II, Adv. Math. 207(1) (2006), 420454.CrossRefGoogle Scholar
9.Alesker, S., Theory of valuations on manifolds: a survey, Geom. Funct. Analysis 17(4) (2007), 13211341.CrossRefGoogle Scholar
10.Alesker, S., A Fourier type transform on translation invariant valuations on convex sets, Israel J. Math. 181 (2011), 189294.CrossRefGoogle Scholar
11.Bernig, A., A Hadwiger type theorem for the special unitary group, Geom. Funct. Analysis 19 (2009), 356372.CrossRefGoogle Scholar
12.Bernig, A., A product formula for valuations on manifolds with applications to the integral geometry of the quaternionic line, Comment. Math. Helv. 84(1) (2009), 119.CrossRefGoogle Scholar
13.Bernig, A., Integral geometry under G 2 and Spin(7), Israel J. Math. 184 (2011), 301316.CrossRefGoogle Scholar
14.Bernig, A., Algebraic integral geometry, preprint (arXiv:1004.3145).Google Scholar
15.Bernig, A. and Bröcker, L., Valuations on manifolds and Rumin cohomology, J. Diff. Geom. 75(3) (2007), 433457.Google Scholar
16.Bernig, A. and Fu, J. H. G., Hermitian integral geometry, Annals Math. 173 (2011), 907945.CrossRefGoogle Scholar
17.Fu, J. H. G., Structure of the unitary valuation algebra, J. Diff. Geom. 72(3) (2006), 509533.Google Scholar
18.Fulton, W., Young tableaux (with applications to representation theory and geometry), London Mathematical Society Student Texts, Volume 35 (Cambridge University Press, 1997).Google Scholar
19.Fulton, W. and Harris, J., Representation theory: a first course, Graduate Texts in Mathematics, Volume 129 (Springer, 1991).Google Scholar
20.Goodman, R. and Wallach, N. R., Symmetry, representations, and invariants, Graduate Texts in Mathematics, Volume 255 (Springer, 2009).CrossRefGoogle Scholar
21.Klain, D. A., Even valuations on convex bodies, Trans. Am. Math. Soc. 352(1) (2000), 7193.CrossRefGoogle Scholar
22.Klain, D. A. and Rota, G.-C., Introduction to geometric probability, Lezioni Lincee (Lincei Lectures) (Cambridge University Press, 1997).Google Scholar
23.McMullen, P., Valuations and Euler-type relations on certain classes of convex polytopes, Proc. Lond. Math. Soc. 35(1) (1977), 113135.CrossRefGoogle Scholar
24.Rumin, M., Differential forms on contact manifolds (Formes différentielles sur les variétés de contact), J. Diff. Geom. 39(2) (1994), 281330.Google Scholar
25.Schneider, R., Convex bodies: the Brunn–Minkowski theory, Encyclopedia of Mathematics and Its Applications, Volume 44 (Cambridge University Press, 1993).CrossRefGoogle Scholar
26.Spivak, M., A comprehensive introduction to differential geometry, 2nd edn, Volume V (Publish or Perish, Berkeley, 1979).Google Scholar
27.Tasaki, H., Generalization of Kähler angle and integral geometry in complex projective spaces, II, Math. Nachr. 252 (2003), 106112.CrossRefGoogle Scholar
28.Zähle, M., Integral and current representation of Federer's curvature measures, Arch. Math. 46(6) (1986), 557567.CrossRefGoogle Scholar