Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T14:04:23.395Z Has data issue: false hasContentIssue false

The infinitesimal index

Published online by Cambridge University Press:  18 May 2012

C. De Concini
Affiliation:
Dipartimento di Matematica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italia
C. Procesi
Affiliation:
Dipartimento di Matematica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italia
M. Vergne
Affiliation:
Institut de Mathématiques de Jussieu, 175 rue du Chevaleret, 75013 Paris, France ([email protected])

Abstract

In this note, we study an invariant associated with the zeros of the moment map generated by an action form, the infinitesimal index. This construction will be used to study the compactly supported equivariant cohomology of the zeros of the moment map and to give formulas for the multiplicity index map of a transversally elliptic operator.

Type
Research Article
Copyright
©Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atiyah, M. F., Elliptic operators and compact groups, p. 401 (Springer L.N.M., 1974).Google Scholar
Atiyah, M. F. and Bott, R., The moment map and equivariant cohomology, Topology 23 (1984), 128.Google Scholar
Berline, N., Getzler, E. and Vergne, M., Heat kernels and dirac operators. Collection Grundlehren der Mathematischen Wissenschaften, Volume 298 (Springer, Berlin, 1991).Google Scholar
Berline, N. and Vergne, M., The Chern character of a transversally elliptic symbol and the equivariant index, Invent. Math. 124 (1996), 1149.Google Scholar
Berline, N. and Vergne, M., L’indice équivariant des opérateurs transversalement elliptiques, Invent. Math. 124 (1996), 51101.Google Scholar
Berline, N. and Vergne, M., Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris Sér. I Math 295 (1982), 539541.Google Scholar
Berline, N. and Vergne, M., Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke. Math. J. 50 (1983), 539549.Google Scholar
Bott, R. and Tu, L., Equivariant characteristic classes in the Cartan model, Geometry, Analysis and Applications (Varanasi 2000), pp. 320 (World Sci. Publishing, River Edge, NJ, 2001).Google Scholar
De Concini, C., Procesi, C. and Vergne, M., Vector partition functions and index of transversally elliptic operators, Transform. Groups 15 (2010), 775811.CrossRefGoogle Scholar
De Concini, C., Procesi, C. and Vergne, M., Infinitesimal index: cohomology computations, Transform. Groups 16 (2011), 717735. (arXiv:math:1005.0128).Google Scholar
De Concini, C., Procesi, C. and Vergne, M., Box splines and the equivariant index theorem, To appear in JIMJ (arXiv:1012.1049).Google Scholar
Duflo, M. and Kumar, Shrawan, Sur la cohomologie équivariante des variétés différentiables, Astérisque 215 (1993).Google Scholar
Guillemin, V. and Sternberg, S., Supersymmetry and equivariant de Rham theory. With an appendix containing two reprints by Henri Cartan, in Mathematics past and present. (Springer, Berlin, 1999).Google Scholar
Jeffrey, L. C. and Kirwan, F. C., Localization for nonabelian group actions, Topology 34 (1995), 291327.Google Scholar
Jeffrey, L. C. and Kirwan, F. C., Intersection pairings in moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, Ann. Math. 148 (1998), 109191.Google Scholar
Kumar, Shrawan and Vergne, M., Equivariant cohomology with generalized coefficients, Astérisque 215 (1993), 109204.Google Scholar
Lojasiewicz, S., Triangulation of semi-analytic sets, Ann. Sc. Norm. Super. Pisa 18 (1964), 449474.Google Scholar
Mathai, V. and Quillen, D., Superconnections, Thom classes and equivariant differential forms, Topology 25 (1986), 85110.CrossRefGoogle Scholar
Paradan, P.-E., Formules de localisation en cohomologie équivariante, Compositio Mathematica 117 (1999), 243293.CrossRefGoogle Scholar
Paradan, P.-E., The moment map and equivariant cohomology with generalized coefficients, Topology 39 (2000), 401444.Google Scholar
Paradan, P.-E. and Vergne, M., Equivariant relative Thom forms and Chern characters, (arXiv:math/0711.3898).Google Scholar
Paradan, P.-E. and Vergne, M., The index of transversally elliptic operators, Astérisque 328 (2009), 297338. (arXiv:0804.1225).Google Scholar
Spanier, E. H., Algebraic topology. (McGraw-Hill Book Co., New York, Toronto, Ont., London, 1966), xiv+528 pp.Google Scholar
Vergne, M., Applications of equivariant cohomology, Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006, Volume 1, pp. 635664 (European Mathematical Society, 2007).Google Scholar
Witten, E., Two dimensional gauge theories revisited, J. Geom. Phys. 9 (1992), 303368.Google Scholar