Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T16:56:20.959Z Has data issue: false hasContentIssue false

Hilbertianity of fields of power series

Published online by Cambridge University Press:  13 December 2011

Elad Paran
Affiliation:
Einstein Institute of Mathematics, J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel ([email protected])

Abstract

Let R be a domain contained in a rank-1 valuation ring of its quotient field. Let RX⟧ be the ring of formal power series over R, and let F be the quotient field of RX⟧. We prove that F is Hilbertian. This resolves and generalizes an open problem of Jarden, and allows to generalize previous Galois-theoretic results over fields of power series.

MSC classification

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Anderson, D., Houston, E. and Zafrullah, M., t-linked extensions, the t-class group, and Nagata's theorem, J. Pure Appl. Alg. 86 (1993), 109124.CrossRefGoogle Scholar
2.Dèbes, P. and Deschamps, B., The regular inverse Galois problem over large fields, in Geometric Galois actions, Volume 2, London Mathematical Society Lecture Note Series, Volume 243, pp. 119138 (Cambridge University Press, 1997).CrossRefGoogle Scholar
3.Fried, M. and Jarden, M., Field arithmetic, 2nd edn (revised and enlarged by Jarden, M.), Ergebnisse der Mathematik III, Volume 11 (Springer, 2005).CrossRefGoogle Scholar
4.Griffin, M., Families of finite character and essential valuations, Trans. Am. Math. Soc. 130 (1968), 7585.CrossRefGoogle Scholar
5.Griffin, M., Rings of Krull type, J. Reine Angew. Math. 229 (1968), 127.Google Scholar
6.Haran, D. and Völklein, H., Galois groups over complete valued fields, Israel J. Math. 93 (1996), 927.CrossRefGoogle Scholar
7.Harbater, D. and Stevenson, K., Local Galois theory in dimension two, Adv. Math. 198 (2005), 623653.CrossRefGoogle Scholar
8.Jarden, M., Algebraic patching, Springer Monographs in Mathematics (Springer, 2011).CrossRefGoogle Scholar
9.Krull, W., Allgemeine Bewertungstheorie, J. Reine Angew. Math. 167 (1932), 160196.CrossRefGoogle Scholar
10.Lefcourt, T., Galois groups and complete domains, Israel J. Math. 114 (1999), 323346.CrossRefGoogle Scholar
11.Matsumura, H., Commutative ring theory (Cambridge University Press, 1986).Google Scholar
12.Mott, J. L., On the complete integral closure of an integral domain of Krull type, Math. Annalen 173 (1967), 238240.CrossRefGoogle Scholar
13.Nakayama, T., On Krull's conjecture concerning completely integrally closed integrity domains, Proc. Imp. Acad. Tokyo 18 (1942), 185–187, 233236.Google Scholar
14.Paran, E., Split embedding problems over complete domains, Annals Math. 170 (2009), 899914.CrossRefGoogle Scholar
15.Paran, E. and Temkin, M., Power series over generalized Krull domains, J. Alg. 323 (2010), 546550.CrossRefGoogle Scholar
16.Pirtle, E., Families of valuations and semigroups of fractionary ideal classes, Trans. Am. Math. Soc. 144 (1969), 427439.Google Scholar
17.Pop, F., Embedding problems over large fields, Annals Math. 144 (1996), 134.CrossRefGoogle Scholar
18.Pop, F., Henselian implies large, Annals Math. 172 (2010), 21832195.CrossRefGoogle Scholar
19.Ribenboim, P., Anneaux normaux réels à charctère fini, Summa Brasiliensis Math. 3 (1956), 213253.Google Scholar
20.Singh, S. and Kumar, R., (KE)-domains and their generalizations, Arch. Math. 23 (1972), 390397.CrossRefGoogle Scholar
21.Weissauer, R., Der Hilbertsche Irreduzibilitätssatz, J. Reine Angew. Math. 334 (1982), 203220.Google Scholar
22.Zariski, O. and Samuel, P., Commutative algebra, Volume II (van Nostrand Reinhold, New York, 1960).CrossRefGoogle Scholar