No CrossRef data available.
Article contents
EXTENSION BETWEEN SIMPLE MODULES OF PRO-p-IWAHORI HECKE ALGEBRAS
Published online by Cambridge University Press: 20 May 2022
Abstract
We calculate the extension groups between simple modules of pro-p-Iwahori Hecke algebras.
MSC classification
- Type
- Research Article
- Information
- Journal of the Institute of Mathematics of Jussieu , Volume 22 , Issue 6 , November 2023 , pp. 2775 - 2804
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press
References
Abe, N., ‘A comparison between pro-
$p$
Iwahori–Hecke modules and
$\operatorname{mod}\ p$
representations’, Algebra Number Theory 13(8) (2019), 1959–1981.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1539.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1540.png?pub-status=live)
Abe, N., ‘Involutions on pro-
$p$
-Iwahori Hecke algebras’, Represent. Theory 23 (2019), 57–87.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1541.png?pub-status=live)
Abe, N., ‘Modulo
$p$
parabolic induction of pro-
$p$
-Iwahori Hecke algebra’, J. Reine Angew. Math. 749 (2019), 1–64.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1542.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1543.png?pub-status=live)
Abe, N., ‘Parabolic inductions for pro-
$p$
-Iwahori Hecke algebras’, Adv. Math. 355 (2019), 106776, 63.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1544.png?pub-status=live)
Abe, N., Henniart, G., Herzig, F. and Vignéras, M.-F., ‘A classification of irreducible admissible mod
$p$
representations of
$p$
-adic reductive groups’, J. Amer. Math. Soc. 30(2) (2017), 495–559.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1545.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1546.png?pub-status=live)
Abe, N., Henniart, G. and Vignéras, M.-F., ‘On pro-
$p$
-Iwahori invariants of
$R$
-representations of reductive
$p$
-adic groups’, Represent. Theory 22 (2018), 119–159.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1547.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1548.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1549.png?pub-status=live)
Breuil, C. and Paškūnas, V., ‘Towards a modulo
$p$
Langlands correspondence for
$\mathrm{GL}_2$
’, Mem. Amer. Math. Soc. 216(1016) (2012), vi+114.Google Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1550.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1551.png?pub-status=live)
Fayers, M., ‘0-Hecke algebras of finite Coxeter groups’, J. Pure Appl. Algebra 199(1–3) (2005), 27–41.CrossRefGoogle Scholar
Grosse-Klönne, E., ‘From pro-
$p$
Iwahori–Hecke modules to
$\left(\varphi, \varGamma \right)$
-modules, I’, Duke Math. J. 165(8) (2016), 1529–1595.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1552.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1553.png?pub-status=live)
Hauseux, J., ‘Extensions entre séries principales
$p$
-adiques et modulo
$p$
de
$G(F)$
’, J. Inst. Math. Jussieu 15(2) (2016), 225–270.10.1017/S1474748014000243CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1554.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1555.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1556.png?pub-status=live)
Hauseux, J., ‘Compléments sur les extensions entre séries principales
$p$
-adiques et modulo
$p$
de
$G(F)$
’, Bull. Soc. Math. France 145(1) (2017), 161–192.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1557.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1558.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1559.png?pub-status=live)
Karol, K., ‘Homological dimension of simple pro-
$p$
-Iwahori–Hecke modules’, Math. Res. Lett. 26(3) (2019), 769–804.Google Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1560.png?pub-status=live)
Nadimpalli, S., ‘On extensions of characters of affine pro-
$p$
Iwahori–Hecke algebra’, Preprint, arXiv:1703.03110.Google Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1561.png?pub-status=live)
Ollivier, R., ‘Compatibility between Satake and Bernstein isomorphisms in characteristic
$p$
’, Algebra Number Theory 8(5) (2014), 1071–1111.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1562.png?pub-status=live)
Ollivier, R. and Schneider, P., ‘Pro-
$p$
Iwahori–Hecke algebras are Gorenstein’, J. Inst. Math. Jussieu 13 4) (2014), 753–809.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1563.png?pub-status=live)
Paškūnas, V., ‘Extensions for supersingular representations of
$\mathrm{GL}_2\left({\mathbb{Q}}_p\right)$
’, Astérisque (331) (2010), 317–353.Google Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1564.png?pub-status=live)
Vignéras, M.-F., ‘Pro-
$p$
-Iwahori Hecke ring and supersingular
${\overline{\mathbf{F}}}_p$
-representations’, Math. Ann. 331(3) (2005), 523–556.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1565.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1566.png?pub-status=live)
Vignéras, M.-F., ‘The pro-
$p$
-Iwahori Hecke algebra of a
$p$
-adic group III’, J. Inst. Math. Jussieu (2015), 1–38.Google Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1567.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1568.png?pub-status=live)
Vignéras, M.-F., ‘The pro-
$p$
Iwahori Hecke algebra of a reductive
$p$
-adic group, V (parabolic induction)’, Pacific J. Math. 279(1–2) (2015), 499–529.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1569.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1570.png?pub-status=live)
Vignéras, M.-F., ‘The pro-
$p$
-Iwahori Hecke algebra of a reductive
$p$
-adic group I’, Compos. Math. 152(4) (2016), 693–753.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1571.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231011174340993-0672:S1474748022000202:S1474748022000202_inline1572.png?pub-status=live)