Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T15:57:56.806Z Has data issue: false hasContentIssue false

EXTENDING THE DOUBLE RAMIFICATION CYCLE BY RESOLVING THE ABEL-JACOBI MAP

Part of: Curves

Published online by Cambridge University Press:  20 May 2019

David Holmes*
Affiliation:
Universiteit Leiden Mathematisch Instituut, Mathematics, Leiden, 2300 RA, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the moduli space of smooth curves, the double ramification cycle can be defined by pulling back the unit section of the universal jacobian along the Abel–Jacobi map. This breaks down over the boundary since the Abel–Jacobi map fails to extend. We construct a ‘universal’ resolution of the Abel–Jacobi map, and thereby extend the double ramification cycle to the whole of the moduli of stable curves. In the non-twisted case, we show that our extension coincides with the cycle constructed by Li, Graber, Vakil via a virtual fundamental class on a space of rubber maps.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© Cambridge University Press 2019

References

Behrend, K. and Fantechi, B., The intrinsic normal cone, Invent. Math. 128(1) (1997), 4588.CrossRefGoogle Scholar
Cavalieri, R., Marcus, S. and Wise, J., Polynomial families of tautological classes on 𝓜g, n rt , J. Pure Appl. Algebra 216 (2012), 950981.CrossRefGoogle Scholar
Chiodo, A., Towards an enumerative geometry of the moduli space of twisted curves and rth roots, Compos. Math. 144(06) (2008), 14611496.CrossRefGoogle Scholar
Costello, K., Higher genus Gromov-Witten invariants as genus zero invariants of symmetric products, Ann. of Math. (2) 164(2) (2006), 561601.CrossRefGoogle Scholar
Dudin, B., Compactified universal jacobian and the double ramification cycle, http://arxiv.org/abs/1505.02897 (2015).Google Scholar
Faber, C. and Pandharipande, R., Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS) 7(1) (2005), 1349.CrossRefGoogle Scholar
Farkas, G. and Pandharipande, R., The moduli space of twisted canonical divisors, J. Inst. Math. Jussieu 17(3) (2018), 615672. With an appendix by Janda, Pandharipande, Pixton, and Zvonkine.CrossRefGoogle Scholar
Ferrand, D., Conducteur, descente et pincement, Bull. Soc. Math. France 131(4) (2003), 553585.CrossRefGoogle Scholar
Frenkel, E., Teleman, C. and Tolland, A. J., Gromov-Witten gauge theory, Adv. Math. 288 (2016), 201239.CrossRefGoogle Scholar
Fulton, W., Intersection Theory (Springer, Berlin, 1984).CrossRefGoogle Scholar
Fulton, W., Introduction to Toric Varieties, Volume 131 (Princeton University Press, 1993).CrossRefGoogle Scholar
Graber, T. and Vakil, R., Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J. 130(1) (2005), 137.CrossRefGoogle Scholar
Grushevsky, S. and Zakharov, D., The zero section of the universal semiabelian variety, and the double ramification cycle, Duke Math J. 163(5) (2014), 8891070.CrossRefGoogle Scholar
Guéré, J., A generalization of the double ramification cycle via log-geometry, http://arxiv.org/abs/1603.09213 (2016).Google Scholar
Hain, R., Normal Functions and the Geometry of Moduli Spaces of Curves, Handbook of Moduli (ed. Farkas, G. and Morrison, I.), Advanced Lectures in Mathematics, Volume XXIV, Volume I (International Press, Boston, 2013).Google Scholar
Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero: II, Ann. of Math. (2) 79(2) (1964), 205326.CrossRefGoogle Scholar
Holmes, D., Néron models of jacobians over base schemes of dimension greater than 1, J. Reine Angew. Math. 2019(747) (2017), 109145.CrossRefGoogle Scholar
Holmes, D., Kass, J. and Pagani, N., Extending the double ramification cycle using jacobians, Eur. J. Math. 4(1087) (2018), 10871099.CrossRefGoogle Scholar
Holmes, D., Pixton, A. and Schmitt, J., Multiplicativity of the double ramification cycle, to appear in Documenta Mathematica (2017), https://arxiv.org/abs/1711.10341.Google Scholar
Janda, F., Pandharipande, R., Pixton, A. and Zvonkine, D., Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125(1) (2017), 221266.CrossRefGoogle Scholar
Kass, J. L. and Pagani, N., The stability space of compactified universal jacobians, to appear in Trans. Amer. Math. Soc. (2017), https://doi.org/10.1090/tran/7724.CrossRefGoogle Scholar
Kato, F., Log smooth deformation theory, Tohoku Math. J. (2) 48(3) (1996), 317354.CrossRefGoogle Scholar
Kato, F., Log smooth deformation and moduli of log smooth curves, Internat. J. Math. 11(2) (2000), 215232.CrossRefGoogle Scholar
Kato, K., Toric singularities, Amer. J. Math. 116(5) (1994), 10731099.CrossRefGoogle Scholar
Li, J., Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57(3) (2001), 509578.CrossRefGoogle Scholar
Li, J., A degeneration formula of GW-invariants, J. Differential Geom. 60(2) (2002), 199293.CrossRefGoogle Scholar
Marcus, S. and Wise, J., Stable maps to rational curves and the relative jacobian, https://arxiv.org/abs/1310.5981 (2013).Google Scholar
Marcus, S. and Wise, J., Logarithmic compactification of the Abel-Jacobi section, https://arxiv.org/abs/1708.04471 (2017).Google Scholar
Olsson, M. C., Log algebraic stacks and moduli of log schemes, ProQuest LLC, Ann Arbor, MI, PhD thesis, University of California, Berkeley (2001).Google Scholar
Raynaud, M. and Gruson, L., Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 189.CrossRefGoogle Scholar
Rydh, D., Compactification of tame deligne–mumford stacks, Preprint, 2011, https://people.kth.se/∼dary/tamecompactification20110517.pdf.Google Scholar
Schmitt, J., Dimension theory of the moduli space of twisted k-differentials, Doc. Math. 23 (2018), 871894.Google Scholar
Vistoli, A., Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97(3) (1989), 613670.CrossRefGoogle Scholar