Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T09:37:09.306Z Has data issue: false hasContentIssue false

Exceptional divisors that are not uniruled belong to the image of the Nash map

Published online by Cambridge University Press:  13 December 2011

Monique Lejeune-Jalabert
Affiliation:
Centre National de la Recherche Scientifique, Laboratoire de Mathématiques de Versailles, UMR8100, CNRS-UVSQ, Université de Versailles, Saint-Quentin, Bâtiment Fermat, 45 Avenue des Etats-Unis, F-78035 Versailles Cedex, France ([email protected])
Ana J. Reguera
Affiliation:
Departamento de Álgebra, Geometría y Topología, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid, Spain ([email protected])

Abstract

We prove that, if X is a variety over an uncountable algebraically closed field k of characteristic zero, then any irreducible exceptional divisor E on a resolution of singularities of X which is not uniruled, belongs to the image of the Nash map, i.e. corresponds to an irreducible component of the space of arcs on X centred in Sing X. This reduces the Nash problem of arcs to understanding which uniruled essential divisors are in the image of the Nash map, more generally, how to determine the uniruled essential divisors from the space of arcs.

MSC classification

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Abhyankar, S. S., On the valuations centered in a local domain, Am. J. Math. 78 (1956), 321348.CrossRefGoogle Scholar
2.Abhyankar, S. S., Quasirational singularities, Am. J. Math. 101 (1979), 267300.CrossRefGoogle Scholar
3.Artin, M., Algebraic approximation of structures over complete local rings, Publ. Math. IHES 36 (1969), 2358.CrossRefGoogle Scholar
4.Bǎnicǎ, C. and Stǎnǎçilǎ, O., Algebraic methods in the global theory of complex spaces (Wiley, 1976).Google Scholar
5.Bouvier, C., Diviseurs essentiels, composantes essentielles des variétés toriques singulières, Duke Math. J. 91(3) (1998), 609620.CrossRefGoogle Scholar
6.Debarre, O., Higher-dimensional algebraic geometry (Springer, 2000).Google Scholar
7.Denef, J. and Loeser, F., Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), 201232.CrossRefGoogle Scholar
8.Ein, L. and Mustata, M., Jet schemes and singularities, in Algebraic Geometry, Seattle, 2005, Part 2, pp. 505546, Proceedings of Symposia in Pure Mathematics, Volume 80, Part 2 (American Mathematical Society, Providence, RI, 2009).Google Scholar
9.Gonzalez-Sprinberg, G. and Lejeune-Jalabert, M., Families of smooth curves on surface singularities and wedges, Ann. Polon. Math. 67(2) (1997), 179190.CrossRefGoogle Scholar
10.Grauert, H., Über Modifikationen und exzeptionelle analytische Mengen, Math. Annalen 146 (1962), 331368.CrossRefGoogle Scholar
11.Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, Volume 52 (Springer, 1977).CrossRefGoogle Scholar
12.Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, I, Annals Math. 79(1) (1964), 109203.CrossRefGoogle Scholar
13.Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, II, Annals Math. 79(2) (1964), 205326.CrossRefGoogle Scholar
14.Ishii, S., The arc space of a toric variety, J. Alg. 278 (2004), 666683.CrossRefGoogle Scholar
15.Ishii, S. and Kollár, J., The Nash problem on arc families of singularities, Duke Math. J. 120(3) (2003), 601620.Google Scholar
16.Kollár, J., Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 32 (Springer, 1999).Google Scholar
17.Lejeune-Jalabert, M., Arcs analytiques et résolution minimale des singularités des surfaces quasi-homogènes, Lecture Notes in Mathematics, Volume 777, pp. 303336 (Springer, 1980).Google Scholar
18.Lejeune-Jalabert, M. and Reguera, A., Arcs and wedges on sandwiched surface singularities, Am. J. Math. 121 (1999), 11911213.CrossRefGoogle Scholar
19.Lipman, J., Rational singularities with applications to algebraic surfaces and unique factorization, Publ. Math. IHES 36 (1969), 195279.CrossRefGoogle Scholar
20.Nash, J., Arc structure of singularities, Duke Math. J. 81 (1995), 207212.CrossRefGoogle Scholar
21.Reguera, A. J., Families of arcs on rational surface singularities, Manuscr. Math. 88 (1995), 321333.CrossRefGoogle Scholar
22.Reguera, A. J., A curve selection lemma in spaces of arcs and the image of the Nash map, Compositio Math. 142 (2006), 119130.CrossRefGoogle Scholar
23.Reguera, A. J., Towards the singular locus of the space of arcs, Am. J. Math. 131(2) (2009), 313350.CrossRefGoogle Scholar
24.Serre, J.-P., Géométrie algébrique et géométrie analytique, Annales Inst. Fourier 6 (1956), 142.CrossRefGoogle Scholar
25.Vojta, P., Jets via Hasse–Schmidt derivations, in Diophantine geometry, pp. 335361, CRM Series 4 (Edizioni della Normale, Pisa, 2007).Google Scholar