No CrossRef data available.
Article contents
COMPACT SPACES OF THE FIRST BAIRE CLASS THAT HAVE OPEN FINITE DEGREE
Part of:
Real functions
Fairly general properties
Extremal combinatorics
Graph theory
Connections with other structures, applications
Set theory
Published online by Cambridge University Press: 21 November 2016
Abstract
We introduce the open degree of a compact space, and we show that for every natural number $n$, the separable Rosenthal compact spaces of degree $n$ have a finite basis.
Keywords
MSC classification
- Type
- Research Article
- Information
- Journal of the Institute of Mathematics of Jussieu , Volume 17 , Issue 5 , November 2018 , pp. 1173 - 1196
- Copyright
- © Cambridge University Press 2016
Footnotes
First author supported by MINECO and FEDER (MTM2014-54182-P) and by Fundación Séneca - Región de Murcia (19275/PI/14). Second author partially supported by grants from NSERC and CNRS.
References
Argyros, S., Dodos, P. and Kanellopoulos, V., A classification of separable Rosenthal compacta and its applications, Diss. Math.
449 (2008), 52 pp.Google Scholar
Avilés, A., An introduction to multiple gaps, Zb. Rad. Matematički institut.
17(25) (2015), 7–32.Google Scholar
Avilés, A., Poveda, A. and Todorcevic, S., Rosenthal compacta that are premetric of finite degree, Preprint, arXiv:1512.06070.Google Scholar
Avilés, A. and Todorcevic, S., Finite basis for analytic strong n-gaps, Combinatorica
33(4) (2013), 375–393.Google Scholar
Avilés, A. and Todorcevic, S., Finite basis for analytic n-gaps, Publ. Math. Inst. Hautes Études Sci.
121(1) (2015), 57–79.Google Scholar
Bourgain, J., Fremlin, D. and Talagrand, M., Pointwise compact sets of Baire-measurable functions, Amer. J. Math.
100(4) (1978), 845–886.Google Scholar
Debs, G., Descriptive aspects of Rosenthal compacta, in Recent Progress in General Topology, III, pp. 205–227 (Atlantis Press, Paris, 2014).Google Scholar
Kechris, A., Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156 (Springer-Verlag, New York, 1995).Google Scholar
Knaust, H., Array convergence of functions of the first Baire class, Proc. Amer. Math. Soc.
112(2) (1991), 529–532.Google Scholar
Milliken, K. R., A partition theorem for the infinite subsets of a tree, Trans. Amer. Math. Soc.
263 (1981), 137–148.Google Scholar
Odell, E. and Rosenthal, H., A double-dual characterization of separable Banach spaces containing ℓ
1
, Israel J. Math.
20 (1975), 375–384.Google Scholar
Pol, R., Note on pointwise convergence of analytic sets, Mathematika
36 (1989), 290–300.Google Scholar
Rosenthal, H. P., Pointwise compact subsets of first Baire class, Amer. J. Math.
99 (1977), 362–378.Google Scholar
Todorcevic, S., Compact subsets of the first Baire class, J. Amer. Math. Soc.
12 (1999), 1179–1212.Google Scholar
Todorcevic, S., Introduction to Ramsey Spaces, Annals of Mathematics Studies, 174 (Princeton University Press, 2010).Google Scholar