Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T20:54:42.050Z Has data issue: false hasContentIssue false

THE CHRISTOFFEL PROBLEM IN LORENTZIAN GEOMETRY

Published online by Cambridge University Press:  21 October 2005

Levi Lopes de Lima
Affiliation:
Departamento de Matemática, Universidade Federal do Ceará, R. Humberto Monte, s/n, 60455-760, Fortaleza/CE, Brazil ([email protected]; [email protected])
Jorge Herbert Soares de Lira
Affiliation:
Departamento de Matemática, Universidade Federal do Ceará, R. Humberto Monte, s/n, 60455-760, Fortaleza/CE, Brazil ([email protected]; [email protected])

Abstract

The Christoffel problem, in its classical formulation, asks for a characterization of real functions defined on the unit sphere $S^{n-1}\subset\mathbb{R}^n$ which occur as the mean curvature radius, expressed in terms of the Gauss unit normal, of a closed convex hypersurface, i.e. the boundary of a convex body in $\mathbb{R}^n$. In this work we consider the related problem in Lorentz space $\mathbb{L}^n$ and present necessary and sufficient conditions for a $C^1$ function defined in the hyperbolic space $H^{n-1}\subset\mathbb{L}^n$ to be the mean curvature radius of a spacelike embedding $\bm{M}\hookrightarrow\mathbb{L}^n$.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)