No CrossRef data available.
Article contents
BETTI NUMBER ESTIMATES IN $p$-ADIC COHOMOLOGY
Part of:
(Co)homology theory
Published online by Cambridge University Press:Â 07 August 2017
Abstract
In the framework of Berthelotâs theory of arithmetic ${\mathcal{D}}$-modules, we prove the $p$-adic analogue of Betti number estimates and we give some standard applications.
- Type
- Research Article
- Information
- Journal of the Institute of Mathematics of Jussieu , Volume 18 , Issue 5 , September 2019 , pp. 957 - 991
- Copyright
- © Cambridge University Press 2017Â
References
Abe, T., Explicit calculation of Frobenius isomorphisms and PoincarĂ© duality in the theory of arithmetic đ-modules, Rend. Semin. Mat. Univ. Padova
131 (2014), 89â149.Google Scholar
Abe, T. and Marmora, A., Product formula for p-adic epsilon factors, J. Inst. Math. Jussieu
14(2) (2015), 275â377.Google Scholar
BeÄlinson, A. A., Bernstein, J. and Deligne, P., Faisceaux pervers, in Analysis and Topology on Singular Spaces, I (Luminy 1981), AstĂ©risque, Volume 100, pp. 5â171 (Soc. Math. France, Paris, 1982).Google Scholar
Berthelot, P., Cohomologie rigide et thĂ©orie de Dwork: le cas des sommes exponentielles, AstĂ©risque, (119â120)
3 (1984), 17â49.
$p$
-adic cohomology.Google Scholar
Berthelot, P., Cohomologie rigide et thĂ©orie des đ-modules, in
p-adic Analysis (Trento, 1989), pp. 80â124 (Springer, Berlin, 1990).Google Scholar
Berthelot, P., AltĂ©rations de variĂ©tĂ©s algĂ©briques (dâaprĂšs A. J. de Jong), AstĂ©risque, (241), Exp. No. 815
5 (1997), 273â311. SĂ©minaire Bourbaki, Vol. 1995/96.Google Scholar
Berthelot, P., đ-modules arithmĂ©tiques. II. Descente par Frobenius, MĂ©m. Soc. Math. Fr. (N.S.)
81 (2000), vi+136.Google Scholar
Berthelot, P., Introduction Ă la thĂ©orie arithmĂ©tique des đ-modules, AstĂ©risque
279 (2002), 1â80. Cohomologies
$p$
-adiques et applications arithmétiques, II.Google Scholar
Caro, D., Lagrangianity for log extendable overconvergent F-isocrystals, Math. Z. , available online in December 2016, 15 pages.Google Scholar
Caro, D., DĂ©vissages des F-complexes de đ-modules arithmĂ©tiques en F-isocristaux surconvergents, Invent. Math.
166(2) (2006), 397â456.Google Scholar
Caro, D., Fonctions L associĂ©es aux đ-modules arithmĂ©tiques. Cas des courbes, Compos. Math.
142(01) (2006), 169â206.Google Scholar
Caro, D., Overconvergent F-isocrystals and differential overcoherence, Invent. Math.
170(3) (2007), 507â539.Google Scholar
Caro, D. and Tsuzuki, N., Overholonomicity of overconvergent F-isocrystals over smooth varieties, Ann. of Math. (2)
176(2) (2012), 747â813.Google Scholar
Christol, G. and Mebkhout, Z., Sur le thĂ©orĂšme de lâindice des Ă©quations diffĂ©rentielles p-adiques. IV, Invent. Math.
143(3) (2001), 629â672.Google Scholar
Christol, G. and Mebkhout, Z., Sur le thĂ©orĂšme de lâindice des Ă©quations diffĂ©rentielles p-adiques. IV, Invent. Math.
143(3) (2001), 629â672.Google Scholar
Christol, G. and Mebkhout, Z., Ăquations diffĂ©rentielles p-adiques et coefficients p-adiques sur les courbes, AstĂ©risque
279 (2002), 125â183. Cohomologies
$p$
-adiques et applications arithmétiques, II.Google Scholar
Crew, R., Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve, Ann. Sci. Ăc. Norm. SupĂ©r. (4)
31(6) (1998), 717â763.Google Scholar
de Jong, A. J., Smoothness, semi-stability and alterations, Inst. Hautes Ătudes Sci. Publ. Math.
83 (1996), 51â93.Google Scholar
Deligne, P., La conjecture de Weil. II, Inst. Hautes Ătudes Sci. Publ. Math.
52 (1980), 137â252.Google Scholar
Fulton, W., Intersection Theory, second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Volume 2 (Springer, Berlin, 1998).Google Scholar
Grothendieck, A., ĂlĂ©ments de gĂ©omĂ©trie algĂ©brique. I. Le langage des schĂ©mas, Inst. Hautes Ătudes Sci. Publ. Math.
4 (1960), 228.Google Scholar
Grothendieck, A., ĂlĂ©ments de gĂ©omĂ©trie algĂ©brique. II. Ătude globale Ă©lĂ©mentaire de quelques classes de morphismes, Inst. Hautes Ătudes Sci. Publ. Math.
8 (1961), 222.Google Scholar
Grothendieck, A., ĂlĂ©ments de gĂ©omĂ©trie algĂ©brique. IV. Ătude locale des schĂ©mas et des morphismes de schĂ©mas. I, Inst. Hautes Ătudes Sci. Publ. Math.
20 (1964), 259.Google Scholar
Grothendieck, A., ĂlĂ©ments de gĂ©omĂ©trie algĂ©brique. IV. Ătude locale des schĂ©mas et des morphismes de schĂ©mas. II, Inst. Hautes Ătudes Sci. Publ. Math. (24) (1965), 231.Google Scholar
Grothendieck, A., ĂlĂ©ments de gĂ©omĂ©trie algĂ©brique. IV. Ătude locale des schĂ©mas et des morphismes de schĂ©mas. III, Inst. Hautes Ătudes Sci. Publ. Math. (28) (1966), 255.Google Scholar
Grothendieck, A., ĂlĂ©ments de gĂ©omĂ©trie algĂ©brique. IV. Ătude locale des schĂ©mas et des morphismes de schĂ©mas IV, Inst. Hautes Ătudes Sci. Publ. Math. (32) (1967), 361.Google Scholar
Katz, N. M. and Laumon, G., Transformation de Fourier et majoration de sommes exponentielles, Inst. Hautes Ătudes Sci. Publ. Math.
62 (1985), 361â418.Google Scholar
Kedlaya, K. S., Semistable reduction for overconvergent F-isocrystals on a curve, Math. Res. Lett.
10(2â3) (2003), 151â159.Google Scholar
Kedlaya, K. S., More Ă©tale covers of affine spaces in positive characteristic, J. Algebraic Geom.
14(1) (2005), 187â192.Google Scholar
Kedlaya, K. S.,
p-adic Differential Equations, Cambridge Studies in Advanced Mathematics, Volume 125 (Cambridge University Press, Cambridge, 2010).Google Scholar
Kedlaya, K. S., Semistable reduction for overconvergent F-isocrystals, IV: local semistable reduction at nonmonomial valuations, Compos. Math.
147(2) (2011), 467â523.Google Scholar
Lang, S., Algebra, third edition, Graduate Texts in Mathematics, Volume 211 (Springer, New York, 2002).Google Scholar
Laumon, G., Transformations canoniques et spĂ©cialisation pour les rD-modules filtrĂ©s, AstĂ©risque (130) (1985), 56â129. Differential systems and singularities (Luminy, 1983).Google Scholar
Liu, Q., Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics, Volume 6 (Oxford University Press, Oxford, 2002). Translated from the French by Reinie Erné, Oxford Science Publications.Google Scholar
Monsky, P. and Washnitzer, G., Formal cohomology. I, Ann. of Math. (2)
88 (1968), 181â217.Google Scholar
Noot-Huyghe, C., Transformation de Fourier des đ-modules arithmĂ©tiques. I, in Geometric Aspects of Dwork Theory. Vols I, II, pp. 857â907 (Walter de Gruyter GmbH & Co., KG, Berlin, 2004).Google Scholar
RevĂȘtements Ă©tales et groupe fondamental (SGA 1). Documents MathĂ©matiques (Paris) [Mathematical Documents (Paris)], 3. SociĂ©tĂ© MathĂ©matique de France, Paris, 2003. SĂ©minaire de gĂ©omĂ©trie algĂ©brique du Bois Marie 1960â1961. [Geometric Algebra Seminar of Bois Marie 1960â1961], Directed by A. Grothendieck, With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original [Lecture Notes in Mathematics, 224, Springer, Berlin].Google Scholar
Virrion, A., DualitĂ© locale et holonomie pour les đ-modules arithmĂ©tiques, Bull. Soc. Math. France
128(1) (2000), 1â68.Google Scholar