Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T20:41:28.046Z Has data issue: false hasContentIssue false

ARITHMÉTICITÉ DE SOUS-GROUPES D’UN PRODUIT DE GROUPES DE RANG $1$

Published online by Cambridge University Press:  10 April 2017

Sébastien Miquel*
Affiliation:
Université Paris-Sud, Mathématiques, Orsay, 91405, France ([email protected])

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

Benoist, Y. et Oh, H., Discrete subgroups of SL 3(ℝ) generated by triangular matrices, Intl. Math. Res. Not. IMRN 149 (2010).Google Scholar
Benoist, Y. et Oh, H., Discreteness criterion for subgroups of products of SL(2), Transform. Groups 15 (2010), 503515.Google Scholar
Borel, A., Linear Algebraic Groups, 2nd, Graduate Texts in Mathematics, Volume 126 (Springer, New York, 1969).Google Scholar
Borel, A. et Tits, J., Groupes réductifs, Publ. Math. Inst. Hautes Études Sci. 27 (1965), 55151.Google Scholar
Margulis, G. A., Arithmetic properties of discrete subgroups, Russian Math. Surveys 29 (1974), 107156.Google Scholar
Margulis, G. A., Discrete Subgroups of Semisimple Lie Groups, A Series of Modern Surveys in Mathematics, Volume 17 (Springer, Berlin, Heidelberg, 1991).Google Scholar
Oh, H., Discrete subgroups generated by lattices in opposite horospherical subgroups, J. Algebra 203 (1998), 621676.Google Scholar
Raghunathan, R., On the Congruence Subgroup Problem, Publ. Math. Inst. Hautes Études Sci. 46 (1976), 107161.Google Scholar
Selberg, A., Notes on discrete subgroups of motions of products of upper half planes, Unpublished.Google Scholar
Tits, J., Systèmes générateurs de groupes de congruence, C. R. Acad. Sci. Paris 283 (1976), 693695.Google Scholar
Vaserstein, L. N., The structure of classical arithmetic subgroups of rank greater than one, Sb. Math. 20 (1973), 465492.Google Scholar
Venkataramana, T. N., On systems of generators of arithmetic subgroups of higher rank groups, Pacific J. Math. 166 (1994), 193212.Google Scholar