No CrossRef data available.
Published online by Cambridge University Press: 08 May 2014
We study the spectral theory of a reversible Markov chain This random walk depends on a parameter $h\in ]0,h_{0}]$ which is roughly the size of each step of the walk. We prove uniform bounds with respect to $h$ on the rate of convergence to equilibrium, and the convergence when $h\rightarrow 0$ to the associated hypoelliptic diffusion.