No CrossRef data available.
Article contents
Solvable points on genus-one curves over local fields
Published online by Cambridge University Press: 16 May 2012
Abstract
Let be a field complete with respect to a discrete valuation whose residue field is perfect of characteristic . We prove that every smooth, projective, geometrically irreducible curve of genus one defined over with a non-zero divisor of degree a power of has a solvable point over .
- Type
- Research Article
- Information
- Journal of the Institute of Mathematics of Jussieu , Volume 12 , Issue 1 , January 2013 , pp. 31 - 42
- Copyright
- Copyright © Cambridge University Press 2013
References
1.Çiperiani, M. and Wiles, A.
, Solvable points on genus one curves, Duke Math. J. 142 (2008), 381–464.Google Scholar
2.Gorenstein, D.
, Finite groups, 2nd edn (American Mathematical Society, Providence, Rhode Island, 2007).Google Scholar
3.Grothendieck, A. and Raynaud, M.
, Modèles de Néron et monodromie, Groupes de monodromie en Géometrie Algebrique, I, II, Lecture Notes in Math., Volume 288. pp. 313–523 (Springer, 1972).Google Scholar
4.Károlyi, Gy. and Pál, A.
, The cyclomatic number of connected graphs without solvable orbits, J. Ramanujan Math. Soc. (2012), in press.Google Scholar
5.Mazur, B. and Roberts, L.
, Local Euler characteristics, Invent. Math. 9 (1970), 201–223.CrossRefGoogle Scholar
6.Milne, J.
, Étale cohomology (Princeton University Press, Princeton, New Jersey, 1980).Google Scholar
7.Oort, F. and Tate, J.
, Group schemes of prime order, Ann. Sci. Éc. Norm . Supér. (4) 3 (1970), 1–21.Google Scholar
8.Pál, A.
, Solvable points on projective algebraic curves, Canad. J. Math. 56 (2004), 612–637.Google Scholar
9.Pál, A.
, Curves which do not become semi-stable after any solvable extension, Rend. Semin. Mat. Univ. Padova (2012), in press.Google Scholar
10.Roberts, L.
, The flat cohomology of group schemes of rank , Amer. J. Math. 95 (1973), 688–702.CrossRefGoogle Scholar
11.Serre, J.-P.
, Local fields. GTM 67 (second corrected printing, 1995) (Springer-Verlag, New York–Berlin, 1979).Google Scholar
12.Tate, J.
, Finite flat group schemes, Modular forms and Fermats last theorem (Boston, MA, 1995), pp. 121–154 (Springer-Verlag, Berlin–Heidelberg–New York, 1997).Google Scholar