Article contents
SÉRIES HYPERGÉOMÉTRIQUES BASIQUES, $q$-ANALOGUES DES VALEURS DE LA FONCTION ZÊTA ET SÉRIES D’EISENSTEIN
Published online by Cambridge University Press: 28 April 2005
Abstract
Nous étudions la nature arithmétique de $q$-analogues des valeurs $\zeta(s)$ de la fonction zêta de Riemann, notamment des valeurs des fonctions $\zeta_q(s)=\sum_{k=1}^{\infty}q^k\sum_{d\mid k}d^{s-1}$, $s=1,2,\dots$, où $q$ est un nombre complexe, $|q|<1$ (ces fonctions sont intimement liées au monde automorphe). Le théorème principal de cet article montre que, si $1/q$ est un nombre entier différent de $\pm1$ et si $M$ est un nombre impair suffisamment grand, alors la dimension de l’espace vectoriel engendré sur $\mathbb{Q}$ par $1,\zeta_q(3),\zeta_q(5),\dots,\zeta_q(M)$ est au moins $c_1\sqrt{M}$, avec $c_1=0,3358$. Ce résultat peut être considéré comme un $q$-analogue du résultat de Rivoal et de Ball et Rivoal, qui affirme que la dimension de l’espace vectoriel engendré sur $\mathbb{Q}$ par $1,\zeta(3),\zeta(5),\dots,\zeta(M)$ est au moins $c_2\log M$, avec $c_2=0,5906$. Pour les mêmes valeurs de $q$, une minoration similaire pour les valeurs $\zeta_q(s)$ aux entiers $s$ pairs nous permet de redémontrer un cas particulier d’un résultat de Bertrand qui affirme la transcendance sur $\mathbb{Q}$ de l’une des deux séries d’Eisenstein $E_4(q)$ et $E_6(q)$ pour tout nombre complexe $q$ tel que $0<|q|<1$.
Keywords
- Type
- Research Article
- Information
- Journal of the Institute of Mathematics of Jussieu , Volume 5 , Issue 1 , January 2006 , pp. 53 - 79
- Copyright
- 2005 Cambridge University Press
- 19
- Cited by