Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T14:35:20.811Z Has data issue: false hasContentIssue false

PERTURBATION OF THE SEMICLASSICAL SCHRÖDINGER EQUATION ON NEGATIVELY CURVED SURFACES

Published online by Cambridge University Press:  27 August 2015

Suresh Eswarathasan
Affiliation:
Institut des Hautes Études Scientifiques, Le Bois-Marie 35, route de Chartres, 91440 Bures-sur-Yvette, France Department of Mathematics and Statistics, McGill University, Montréal, Canada ([email protected]; [email protected]) School of Mathematics, Cardiff University, Senghennyd Road, Cardiff, Wales, CF244AG, UK
Gabriel Rivière
Affiliation:
Laboratoire Paul Painlevé (U.M.R. CNRS 8524), U.F.R. de Mathématiques, Université Lille 1, 59655 Villeneuve d’Ascq Cedex, France ([email protected])

Abstract

We consider the semiclassical Schrödinger equation on a compact negatively curved surface. For any sequence of initial data microlocalized on the unit cotangent bundle, we look at the quantum evolution (below the Ehrenfest time) under small perturbations of the Schrödinger equation, and we prove that, in the semiclassical limit, and for typical perturbations, the solutions become equidistributed on the unit cotangent bundle.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, R., Lectures of Smale on Differential Topology, Lectures at Columbia University (Columbia University, New York, 1962).Google Scholar
Anantharaman, N. and Nonnenmacher, S., Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Festival Yves Colin de Verdière. Ann. Inst. Fourier (Grenoble) 57 (2007), 24652523.CrossRefGoogle Scholar
Anantharaman, N. and Rivière, G., Dispersion and controllability for the Schrödinger equation on negatively curved manifolds, Anal. PDE 5 (2012), 313338.Google Scholar
Anosov, D. V., Geodesic flows on closed Riemannian manifolds of negative curvature, in Tr. Mat. Inst. Steklova, Proceeding of the Steklov Institute of Mathematics, Volume 90 (American Mathematical Society, 1967).Google Scholar
Baladi, V. and Liverani, C., Exponential decay of correlations for piecewise cone hyperbolic contact flows, Comm. Math. Phys. 314 (2012), 689773.CrossRefGoogle Scholar
Bambusi, D., Graffi, S. and Paul, T., Long time semiclassical approximation of quantum flows: a proof of the Ehrenfest time, Asymptot. Anal. 21 (1999), 149160.Google Scholar
Besse, A., Manifolds all of whose Geodesics are Closed, in Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 93 (Springer, New York, Heidelburg, Berlin, 1978).Google Scholar
Bonechi, F. and De Bièvre, S., Exponential mixing and |log ħ| time scales in quantized hyperbolic maps on the torus, Comm. Math. Phys. 211 (2000), 659686.CrossRefGoogle Scholar
Bouclet, J. M. and De Bièvre, S., Long time propagation and control on scarring for perturbed quantized hyperbolic toral automorphisms, Ann. Henri Poincaré 6 (2005), 885913.CrossRefGoogle Scholar
Bouzouina, A. and Robert, D., Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J. 111 (2002), 223252.Google Scholar
Burger, M., Horocycle flow on geometrically finite surfaces, Duke Math. J. 61 (1990), 779803.Google Scholar
Canzani, Y., Jakobson, D. and Toth, J., On the distribution of perturbations of Schrödinger eigenfunctions, J. Spectr. Theory 4 (2014), 283307.CrossRefGoogle Scholar
Colin de Verdière, Y., Ergodicité et fonctions propres du Laplacien, Comm. Math. Phys. 102 (1985), 497502.Google Scholar
Combescure, M. and Robert, D., Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow, Asymptot. Anal. 14 (1997), 377404.Google Scholar
de la Llave, R., Marco, J. M. and Moriyon, R., Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomology equation, Ann. Math. 123 (1986), 537611.Google Scholar
de la Llave, R. and Obaya, R., Regularity of the composition operator in spaces of Hölder functions, Discrete Contin. Dyn. Syst. 5 (1999), 157184.Google Scholar
Dyatlov, S. and Guillarmou, C., Microlocal limits of plane waves and Eisenstein functions, Ann. Sci. ENS 47 (2014), 371448.Google Scholar
Eels, J. Jr., On the geometry of function spaces, in Symp. Inter. de Topología Alg. Mexico, pp. 303308 (Universidad Nacional Autónoma de México y la Unesco, México, 1958).Google Scholar
Eels, J. Jr., A setting for global analysis, Bull. Amer. Math. Soc. (N.S.) 72(5) (1966), 751807.CrossRefGoogle Scholar
Eliasson, H. I., Geometry of manifolds of maps, J. Differential Geom. 1 (1967), 169194.CrossRefGoogle Scholar
Eswarathasan, S. and Toth, J., Average pointwise bounds for deformations of Schrodinger eigenfunctions, Ann. Henri Poincaré 14 (2012), 611637.Google Scholar
Faure, F., Semi-classical formula beyond the Ehrenfest time in quantum chaos. I. Trace formula, Festival Yves Colin de Verdière. Ann. Inst. Fourier (Grenoble) 57 (2007), 25252599.CrossRefGoogle Scholar
Faure, F. and Tsujii, M., The semiclassical zeta function for geodesic flows on negatively curved manifolds, preprint, 2013, arXiv:1311.4932.Google Scholar
Furstenberg, H., The unique ergodicity of the horocycle flow, in Recent Advances in Topological Dynamics (Proc. Conf., Yale Univ., New Haven, CT, 1972; in honor of Gustav Arnold Hedlund), Lecture Notes in Mathematics, Volume 318, pp. 95115 (Springer, Berlin, 1973).Google Scholar
Gallot, S., Hulin, D. and Lafontaine, J., Riemannian Geometry, Serie Universitext (Springer-Verlag, Berlin Heidelberg, 2004).CrossRefGoogle Scholar
Gorin, T., Prosen, T., Seligman, T. H. and Zdinaric, M., Dynamics of Loschmidt echoes and fidelity decay, Phys. Rep. 435 (2006), 33156.Google Scholar
Goussev, A., Jalabert, R. A., Pastawski, H. M. and Wisniacki, D., Loschmidt Echo, Scholarpedia 7(8) (2012), 11687. arXiv:1206.6348.Google Scholar
Hasselblatt, B., Horospheric foliations and relative pinching, J. Differential Geom. 39 (1994), 5763.Google Scholar
Helffer, B., Martinez, A. and Robert, D., Ergodicité et limite semi-classique, Comm. Math. Phys. 109 (1987), 313326.CrossRefGoogle Scholar
Hirsch, M. and Pugh, C., Smoothness of horocycle foliations, J. Differential Geom. 10 (1975), 225238.CrossRefGoogle Scholar
Hörmander, L., The Analysis of Linear Partial Differential Operators III (Springer, Berlin, New York, 1985).Google Scholar
Jacquod, P. and Petitjean, C., Decoherence, Entanglement and Irreversibility in Quantum Dynamical Systems with Few Degrees of Freedom, Adv. Phys. 58 (2009), 67196.Google Scholar
Jacquod, P., Silvestrov, P. and Beenakker, C., Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo, Phys. Rev. E 64 (2001), 055203(R).Google Scholar
Jalabert, R. A. and Pastawski, H. M., Environment-independent decoherence rate in classically chaotic systems, Phys. Rev. Lett. 86 (2001), 2490.Google Scholar
Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of mathematics and its applications vol. 54, (Cambridge University Press, Cambridge, 1995).CrossRefGoogle Scholar
Katok, A., Knieper, G., Pollicott, M. and Weiss, H., Differentiability and analyticity of topological entropy for Anosov and Geodesic flows, Invent. Math. 98 (1989), 581597.Google Scholar
Liverani, C., On contact Anosov flows, Ann. of Math. (2) 159 (2004), 12751312.Google Scholar
Macià, F. and Rivière, G., Concentration and non-concentration for the Schrödinger evolution on Zoll manifolds, preprint, 2015, arXiv:1505.04945.Google Scholar
Marcus, B., Ergodic properties of horocycle flows for surfaces of negative curvature, Ann. of Math. (2) 105 (1977), 81105.CrossRefGoogle Scholar
Moser, J., On a theorem of Anosov, Differ. Equ. 5 (1969), 411440.Google Scholar
Nonnenmacher, S., Anatomy of quantum chaotic eigenstates, Chaos, Prog. Math. Phys. 66 (2013), 193238.Google Scholar
Palais, R. S., Foundations of Global Non-linear Analysis (W.A. Benjamin Inc., 1968).Google Scholar
Peres, A., Stability of quantum motion in chaotic and regular systems, Phys. Rev. A 30 (1984), 16101615.CrossRefGoogle Scholar
Rivière, G., Long-time dynamics of the perturbed Schrödinger equation on negatively curved surfaces, preprint, 2014, arXiv:1412.4400.Google Scholar
Ruggiero, R. O., Dynamics and global geometry of manifolds without conjugate points, Ensaios Mat. 12 (2007); Soc. Bras. Mat.Google Scholar
Sarnak, P., Recent progress on the quantum unique ergodicity conjecture, Bull. Amer. Math. Soc. (N.S.) 48 (2011), 211228.Google Scholar
Schubert, R., Semiclassical behaviour of expectation values in time evolved Lagrangian states for large times, Comm. Math. Phys. 256 (2005), 239254.Google Scholar
Shnirelman, A., Ergodic properties of eigenfunctions, Uspekhi Mat. Nauk 29 (1974), 181182.Google Scholar
Smale, S., Differentiable dynamical systems, Bull. Amer. Math. Soc. (N.S.) 73 (1967), 747817.Google Scholar
Weber, J., J-holomorphic curves in cotangent bundles and the heat flow, PhD thesis/Dissertation, TU Berlin (1999).Google Scholar
Zelditch, S., Uniform distribution of the eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), 919941.Google Scholar
Zelditch, S., Recent developments in mathematical quantum chaos, in Current Developments in Mathematics, pp. 115204 (Int. Press, Somerville, MA, 2010).Google Scholar
Zworski, M., Semiclassical Analysis, Graduate Studies in Mathematics, Volume 138 (American Mathematical Society, Providence, RI., 2012).CrossRefGoogle Scholar