Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T14:01:05.025Z Has data issue: false hasContentIssue false

PERIODS OF AUTOMORPHIC FORMS: THE TRILINEAR CASE

Published online by Cambridge University Press:  26 October 2015

Shunsuke Yamana*
Affiliation:
Hakubi Center, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan Department of mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan ([email protected])

Abstract

Following Jacquet, Lapid and Rogawski, we regularize trilinear periods. We use the regularized trilinear periods to compute Fourier–Jacobi periods of residues of Eisenstein series on metaplectic groups, which has an application to the Gan–Gross–Prasad conjecture.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernstein, J. and Zelevinsky, A., Representations of the group GL(n, F), where F is a local non-Archimedean field, Uspekhi Mat. Nauk 31(3) (1976), 570 (in Russian); Engl. transl. in Russian Math. Surveys 31 (1976), 1–68.Google Scholar
Bernstein, J. and Zelevinsky, A., Induced representations of reductive p-adic groups, I, Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), 441472.Google Scholar
Bump, D. and Ginzburg, D., Symmetric square L-functions on GL(r), Ann. of Math. (2) 136 (1992), 137205.Google Scholar
Casselman, W., Canonical extensions of Harish-Chandra modules to representations of G , Canad. J. Math. 41 (1989), 385438.Google Scholar
Cogdell, J., Piatetski-Shapiro, I. and Shahidi, F., Functoriality for the classical groups, Publ. Math. Inst. Hautes Études Sci. 99 (2004), 163233.CrossRefGoogle Scholar
Gan, W. T., Gross, B. H. and Prasad, D., Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups, Astérisque 346 (2012), 1109.Google Scholar
Gelbart, S. and Piatetski-Shapiro, I., L-functions for G × GL (n), in Explicit Constructions of Automorphic L-functions, Lecture Notes in Mathematics, Volume 1254, pp. 53146 (Springer-Verlag, Berlin, 1987).Google Scholar
Ginzburg, D., Jiang, D. and Rallis, S., Nonvanishing of the central critical value of the third symmetric power L-functions, Forum Math. 13(1) (2001), 109132.Google Scholar
Ginzburg, D., Jiang, D. and Rallis, S., On the nonvanishing of the central value of the Rankin–Selberg L-functions, J. Amer. Math. Soc. 17(3) (2004), 679722.Google Scholar
Ginzburg, D., Jiang, D. and Rallis, S., On the nonvanishing of the central value of the Rankin–Selberg L-functions II, in Automorphic Representations, L-functions and Applications: Progress and Prospects, Ohio State Univ. Math. Res. Inst. Publ., Volume 11, pp. 157191 (de Gruyter, Berlin, 2005).Google Scholar
Ginzburg, D., Jiang, D. and Rallis, S., Models for certain residual representations of unitary groups, in Automorphic Forms and L-functions I: Global Aspects, Volume 488, pp. 125146. (2009). A volume in honor of S. Gelbart, Israel.Google Scholar
Ginzburg, D., Rallis, S. and Soudry, D., The Descent Map from Automorphic Representations of GL(n) to Classical Groups (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011). x+339 pp.CrossRefGoogle Scholar
Hanzer, M. and Muić, G., Parabolic induction and Jacquet functors for metaplectic groups, J. Algebra 323 (2010), 241260.Google Scholar
Ichino, A. and Yamana, S., Periods of automorphic forms: the case of (GL n+1 × GL n , GL n ), Compos. Math. 151 (2015), 665712.Google Scholar
Jacquet, H., Lapid, E. and Rogawski, J., Periods of automorphic forms, J. Amer. Math. Soc. 12 (1999), 173240.Google Scholar
Jacquet, H. and Shalika, J., On Euler products and the classification of automorphic representations I, Amer. J. Math. 103(3) (1981), 499558.Google Scholar
Jacquet, H. and Shalika, J., Exterior square L-functions, in Automorphic Forms, Shimura Varieties, and L-functions vol. II (ed. Clozel, L. and Milne, S.), pp. 143226. (1990).Google Scholar
Kaplan, E., The theta period of a cuspidal automorphic representation of GL(n), Int. Math. Res. Not. IMRN (8) (2015), 21682209.Google Scholar
Lapid, E. and Rogawski, J., Periods of Eisenstein series: the Galois case, Duke Math. J. 120(1) (2003), 153226.Google Scholar
Liu, Y. and Sun, B., Uniqueness of Fourier–Jacobi models: the Archimedean case, J. Funct. Anal. 265 (2013), 33253340.Google Scholar
Luo, W., Rudnick, Z. and Sarnak, P., On the generalized Ramanujan conjecture for GL(n), in Automorphic Forms, Automorphic Representations, and Arithmetic, Proceedings of Symposia in Applied Mathematics, Volume 66, pp. 301310 (American Mathematical Society, Providence, RI, 1999). Part 2.CrossRefGoogle Scholar
Mœglin, C. and Waldspurger, J.-L., Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Mathematics, Volume 113 (Cambridge University Press, Cambridge, 1995). xxviii+338 pp.Google Scholar
Ranga Rao, R., On some explicit formulas in the theory of Well representation, Pacific J. Math. 157 (1993), 335371.Google Scholar
Sun, B., Multiplicity one theorems for Fourier–Jacobi models, Amer. J. Math. 134(6) (2012), 16551678.Google Scholar
Szpruch, D., The Langlands–Shahidi method for the metaplectic group and applications, PhD thesis, Tel Aviv University (2009).Google Scholar
Wallach, N., Real Reductive Groups vol. II, Pure and Applied Mathematics, Volume 132 (Academic Press, Inc., Boston, MA, 1992). xiv+454 pp.Google Scholar
Yamana, S., Periods of residual automorphic forms, J. Funct. Anal. 268 (2015), 10781104.Google Scholar