Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-08T16:25:44.126Z Has data issue: false hasContentIssue false

Microlocal defect measures for a degenerate thermoelasticity system

Published online by Cambridge University Press:  17 April 2013

Amel Atallah-Baraket
Affiliation:
Dpt. de Mathématiques, Faculté des Sciences de Tunis, Université de Tunis El Manar, 1060, Tunis, Tunisie ([email protected])
Clotilde Fermanian Kammerer
Affiliation:
LAMA UMR CNRS 8050, Université Paris Est - Créteil, 61, avenue du Général de Gaulle, 94010 Créteil Cedex, France ([email protected])

Abstract

In this paper, we study a system of thermoelasticity with a degenerate second-order operator in the heat equation. We analyze the evolution of the energy density of a family of solutions. We consider two cases: when the set of points where the ellipticity of the heat operator fails is included in a hypersurface and when it is an open set. In the first case, and under special assumptions, we prove that the evolution of the energy density is that of a damped wave equation: propagation along the rays of the geometric optic and damping according to a microlocal process. In the second case, we show that the energy density propagates along rays which are distortions of the rays of the geometric optic.

Type
Research Article
Copyright
©Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alinhac, S. and Gérard, P., Pseudo-differential operators and the Nash–Moser Theorem, Graduate Studies in Mathematics, Translated from the 1991 French original by Stephen S. Wilson, Volume 82 (American Mathematical Society, Providence, RI, 2007).Google Scholar
Atallah-Baraket, A. and Kammerer, C. F., High frequency analysis of solutions to the equation of viscoelasticity of Kelvin-Voigt, J. Hyperbolic Differ. Equ. 1 (4) (2004), 789812.Google Scholar
Burq, N., Mesures semi-classiques et mesures de défaut, Sémin. Bourbaki 49-ième année (1996–97), 826.Google Scholar
Burq, N., Contrôle de l’équation des ondes dans des ouverts peu réguliers, Asymptot. Anal. 14 (1997), 157191.Google Scholar
Burq, N. and Gérard, P., Condition Nécessaire et suffisante pour la contrôlabilit exacte des ondes, Comptes Rendus de l’Acadmie des Sciences 325 (Série I) (1997), 749752.Google Scholar
Burq, N. and Gérard, P., Controle optimal des equations aux derivees partielles. (Cours de l’Ecole Polytechnique, 2002).Google Scholar
Burq, N. and Lebeau, G., Mesures de défaut de compacité, application au système de Lamé, Ann. Scient. Éc. Norm. Sup. 34 (2001), 817870.CrossRefGoogle Scholar
Bardos, C., Lebeau, G. and Rauch, J., Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim. (5) 30 (1992), 10241065.Google Scholar
Dafermos, C., On the existence and asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Ration. Mech. Anal. 29 (1968), 241271.CrossRefGoogle Scholar
Duyckaerts, T., Etude haute fréquence de quelques problèmes d’évolution singuliers (Thèse de Doctorat de l’Univesité Paris XI, Orsay, 2004).Google Scholar
Duyckaerts, T., Fermanian Kammerer, C. and Jecko, T., Degenerated codimension 1 crossings and resolvent estimates, Asympt. Anal. 3–4 (2009), 147174.Google Scholar
Francfort, G. A. and Murat, F., Oscillations and energy densities in the wave equation, Comm. Part. Diff. Eq. 17 (1992), 17851865.CrossRefGoogle Scholar
Francfort, G. A. and Suquet, P., Homogenization and mechanical dissipation in thermoviscoelasticity, Arch. Ration. Mech. Anal. 96 (1996), 265293.Google Scholar
Gallagher, I. and Gérard, P., Profile decomposition for the wave equation outside convex obstacles, J. Math. Pures Appl. 80 (2001), 149.CrossRefGoogle Scholar
Gérard, P., Microlocal defect measures, Comm. Part. Diff. Eq. 16 (1991), 17611794.CrossRefGoogle Scholar
Gérard, P. and Leichtnam, E., Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. Jour. 71 (1993), 559607.Google Scholar
Gérard, P., Markowich, P. A., Mauser, N. J. and Poupaud, F., Homogenization Limits and Wigner Transforms, Comm. Pure Appl. Math. 50 (4) (1997), 323379 (erratum: Homogenization limits and Wigner Transforms, Comm. Pure Appl. Math., 53 (2000), 280–281).Google Scholar
Henry, D., Lopes, O. and Perissinotto, A., On the essential spectrum of a semigroup of thermoelasticity, Nonlinear Anal. (1) 21 (1993), 6575.Google Scholar
Lebeau, G., Equation des ondes amorties, Séminaire de l’Ecole polytechnique Exposé XV (1994).Google Scholar
Lebeau, G., Equation des ondes amorties, in Algebraic and Geometric Methods in Mathematical Physics (Kaciveli, 1993), Math. Phys. Stud., Volume 19, pp. 73109 (Kluwer Acad. Publ, Dordrecht, 1996).CrossRefGoogle Scholar
Lebeau, G. and Zuazua, E., Decay rates for the three-dimensional linear system of thermoelasticity, A. R. M. A. (3) 148 (1999), 179231.Google Scholar
Melrose, R. B. and Sjöstrand, J., Singularities of boundary problems I, Comm. Pure Appl. Math. 31 (1978), 593617.CrossRefGoogle Scholar
Tartar, L., H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh, Sect. A 115 (1990), 193230.Google Scholar