Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T09:33:32.283Z Has data issue: false hasContentIssue false

Failure of the Hasse principle on general $K 3$ surfaces

Published online by Cambridge University Press:  08 February 2013

Brendan Hassett
Affiliation:
Department of Mathematics, Rice University, Houston, TX 77005, USA ([email protected]; [email protected])
Anthony Várilly-Alvarado
Affiliation:
Department of Mathematics, Rice University, Houston, TX 77005, USA ([email protected]; [email protected])

Abstract

We show that transcendental elements of the Brauer group of an algebraic surface can obstruct the Hasse principle. We construct a general $K 3$ surface $X$ of degree $2$ over $ \mathbb{Q} $, together with a 2-torsion Brauer class $\alpha $ that is unramified at every finite prime, but ramifies at real points of $X$. With motivation from Hodge theory, the pair $(X, \alpha )$ is constructed from a double cover of ${ \mathbb{P} }^{2} \times { \mathbb{P} }^{2} $ ramified over a hypersurface of bidegree $(2, 2)$.

Type
Research Article
Copyright
©Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkin, A. O. L. and Morain, F., Elliptic curves and primality proving, Math. Comp. 61 (203) (1993), 2968.Google Scholar
Bright, M. J., Bruin, N., Flynn, E. V. and Logan, A., The Brauer–Manin obstruction and Sh[2], LMS J. Comput. Math. 10 (2007), 354377 (electronic).Google Scholar
Bosma, Wieb, Cannon, John and Playoust, Catherine, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (3–4) (1997), 235265. Computational algebra and number theory (London, 1993).CrossRefGoogle Scholar
Beauville, Arnaud, Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. Éc. Norm. Super. (4) 10 (3) (1977), 309391.Google Scholar
Bright, Martin, Brauer groups of diagonal quartic surfaces, J. Symbolic Comput. 41 (5) (2006), 544558.Google Scholar
Birch, B. J. and Swinnerton-Dyer, H. P. F., The Hasse problem for rational surfaces, J. Reine Angew. Math. 274/275 (1975), 164174. Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, III.Google Scholar
Corn, Patrick, The Brauer–Manin obstruction on del Pezzo surfaces of degree 2, Proc. Lond. Math. Soc. (3) 95 (3) (2007), 735777.Google Scholar
Corn, Patrick, Tate–Shafarevich groups and $K 3$ surfaces, Math. Comp. 79 (269) (2010), 563581.Google Scholar
Colliot-Thélène, Jean-Louis, Coray, Daniel and Sansuc, Jean-Jacques, Descente et principe de Hasse pour certaines variétés rationnelles, J. Reine Angew. Math. 320 (1980), 150191.Google Scholar
Colliot-Thélène, Jean-Louis, Kanevsky, Dimitri and Sansuc, Jean-Jacques, Arithmétique des surfaces cubiques diagonales, in Diophantine approximation and transcendence theory (Bonn, 1985), Lecture Notes in Mathematics, Volume 1290, pp. 1108 (Springer, Berlin, 1987).Google Scholar
Colliot-Thélène, Jean-Louis and Skorobogatov, Alexei N., Descente galoisienne sur le groupe de Brauer, J. Reine Angew. Math., to appear, doi: 10.1515/crelle-2012-0039.Google Scholar
Colliot-Thélène, Jean-Louis and Skorobogatov, Alexei N., Good reduction of the Brauer–Manin obstruction, Trans. Amer. Math. Soc. 365 (2) (2013), 579590.Google Scholar
Colliot-Thélène, Jean-Louis, Sansuc, Jean-Jacques and Swinnerton-Dyer, Peter, Intersections of two quadrics and Châtelet surfaces. II, J. Reine Angew. Math. 374 (1987), 72168.Google Scholar
Cunnane, Stephen, Rational points on Enriques surfaces, PhD thesis, Imperial College London (2007).Google Scholar
Eisenbud, David, Commutative algebra, Graduate Texts in Mathematics, Volume 150 (Springer-Verlag, New York, 1995).Google Scholar
Elsenhans, Andreas-Stephan and Jahnel, Jörg, $K 3$ surfaces of Picard rank one and degree two, in Algorithmic number theory, Lecture Notes in Comput. Sci., Volume 5011, pp. 212225 (Springer, Berlin, 2008).Google Scholar
Elsenhans, Andreas-Stephan and Jahnel, Jörg, Cubic surfaces with a Galois invariant double-six, Cent. Eur. J. Math. 8 (4) (2010), 646661.Google Scholar
Elsenhans, Andreas-Stephan and Jahnel, Jörg, On the Brauer–Manin obstruction for cubic surfaces, J. Comb. Number Theory 2 (2) (2010), 107128.Google Scholar
Elsenhans, Andreas-Stephan and Jahnel, Jörg, Cubic surfaces with a Galois invariant pair of Steiner trihedra, Int. J. Number Theory 7 (4) (2011), 947970.Google Scholar
Elsenhans, Andreas-Stephan and Jahnel, Jörg, On the computation of the Picard group for $K 3$ surfaces, Math. Proc. Cambridge Philos. Soc. 151 (2) (2011), 263270.Google Scholar
Elsenhans, Andreas-Stephan and Jahnel, Jörg, The Picard group of a $K 3$ surface and its reduction modulo $p$, Algebra Number Theory 5 (8) (2011), 10271040.Google Scholar
Fujiwara, Kazuhiro, A proof of the absolute purity conjecture (after Gabber), in Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math., Volume 36, pp. 153183 (Math. Soc. Japan, Tokyo, 2002).Google Scholar
Fulton, William, Intersection theory, in Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Volume 2, second edition, A Series of Modern Surveys in Mathematics (Springer-Verlag, Berlin, 1998).Google Scholar
Grayson, Daniel R. and Stillman, Michael E., Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.Google Scholar
Gille, Philippe and Szamuely, Tamás, Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, Volume 101 (Cambridge University Press, Cambridge, 2006).CrossRefGoogle Scholar
Harari, David, Obstructions de Manin transcendantes, in Number theory (Paris, 1993–1994), London Math. Soc. Lecture Note Ser., Volume 235, pp. 7587 (Cambridge University Press, Cambridge, 1996).Google Scholar
Harari, David and Skorobogatov, Alexei, Non-abelian descent and the arithmetic of Enriques surfaces, Int. Math. Res. Not. 52 (2005), 32033228.CrossRefGoogle Scholar
Hassett, Brendan, Várilly-Alvarado, Anthony and Varilly, Patrick, Transcendental obstructions to weak approximation on general K3 surfaces, Adv. Math. 228 (3) (2011), 13771404.Google Scholar
Ieronymou, Evis, Diagonal quartic surfaces and transcendental elements of the Brauer groups, J. Inst. Math. Jussieu 9 (4) (2010), 769798.Google Scholar
Ieronymou, Evis, Skorobogatov, Alexei N. and Zarhin, Yuri G., On the Brauer group of diagonal quartic surfaces, J. Lond. Math. Soc. (2) 83 (3) (2011), 659672.Google Scholar
Kato, Kazuya, A Hasse principle for two-dimensional global fields, J. Reine Angew. Math. 366 (1986), 142183. With an appendix by Jean-Louis Colliot-Thélène.Google Scholar
Kloosterman, Remke, Elliptic $K 3$ surfaces with geometric Mordell–Weil rank 15, Canad. Math. Bull. 50 (2) (2007), 215226.CrossRefGoogle Scholar
Kresch, Andrew and Tschinkel, Yuri, On the arithmetic of del Pezzo surfaces of degree 2, Proc. Lond. Math. Soc. (3) 89 (3) (2004), 545569.Google Scholar
Kresch, Andrew and Tschinkel, Yuri, Effectivity of Brauer–Manin obstructions, Adv. Math. 218 (1) (2008), 127.Google Scholar
Lipman, Joseph, Rational singularities, with applications to algebraic surfaces and unique factorization, Publ. Math. Inst. Hautes Études Sci. 36 (1969), 195279.Google Scholar
Logan, Adam, The Brauer–Manin obstruction on del Pezzo surfaces of degree 2 branched along a plane section of a Kummer surface, Math. Proc. Cambridge Philos. Soc. 144 (3) (2008), 603622.Google Scholar
Looijenga, Eduard and Peters, Chris, Torelli theorems for Kähler $K 3$ surfaces, Compositio Math. 42 (2) (1980/81), 145186.Google Scholar
Logan, Adam and van Luijk, Ronald, Nontrivial elements of Sha explained through $K 3$ surfaces, Math. Comp. 78 (265) (2009), 441483.CrossRefGoogle Scholar
Manin, Y. I., Le groupe de Brauer–Grothendieck en géométrie diophantienne, in Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, pp. 401411 (Gauthier-Villars, Paris, 1971).Google Scholar
Manin, Yu. I., Cubic forms: algebra, geometry, arithmetic, (transl. from Russian) M. Hazewinkel, North-Holland Mathematical Library, Volume 4 (North-Holland Publishing Co., Amsterdam, 1974).Google Scholar
Milne, James S., Étale cohomology, Princeton Mathematical Series, Volume 33 (Princeton University Press, Princeton, NJ, 1980).Google Scholar
Maulik, Davesh and Poonen, Bjorn, Néron–Severi groups under specialization, Duke Math. J. 161 (11) (2012), 21672206.CrossRefGoogle Scholar
Mukai, Shigeru, Symplectic structure of the moduli space of sheaves on an abelian or $K 3$ surface, Invent. Math. 77 (1) (1984), 101116.Google Scholar
Nikulin, V. V., Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1) (1979), 111177, 238.Google Scholar
Preu, Thomas, Transcendental Brauer–Manin obstruction for a diagonal quartic surface, PhD thesis, Universität Zürich (2010).Google Scholar
Stein, W. A. et al. , Sage mathematics software (version 4.2.1). The Sage Development Team, (2009) http://www.sagemath.org.Google Scholar
Swinnerton-Dyer, Peter, The Brauer group of cubic surfaces, Math. Proc. Cambridge Philos. Soc. 113 (3) (1993), 449460.Google Scholar
Swinnerton-Dyer, Peter, Brauer–Manin obstructions on some Del Pezzo surfaces, Math. Proc. Cambridge Philos. Soc. 125 (2) (1999), 193198.Google Scholar
Serre, J.-P., A course in arithmetic, (transl. from French), Graduate Texts in Mathematics, Volume 7 (Springer-Verlag, New York, 1973).CrossRefGoogle Scholar
Revêtements étales et groupe fondamental (SGA 1). Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 3. (Société Mathématique de France, Paris, 2003). Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960-61], Directed by A. Grothendieck, With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 #7129)].Google Scholar
Skorobogatov, Alexei N., Descent on fibrations over the projective line, Amer. J. Math. 118 (5) (1996), 905923.CrossRefGoogle Scholar
Skorobogatov, Alexei, Torsors and rational points, Cambridge Tracts in Mathematics, Volume 144 (Cambridge University Press, Cambridge, 2001).Google Scholar
Skorobogatov, Alexei and Swinnerton-Dyer, Peter, 2-descent on elliptic curves and rational points on certain Kummer surfaces, Adv. Math. 198 (2) (2005), 448483.Google Scholar
Skorobogatov, Alexei N. and Zarhin, Yuri G., A finiteness theorem for the Brauer group of abelian varieties and $K 3$ surfaces, J. Algebraic Geom. 17 (3) (2008), 481502.Google Scholar
Skorobogatov, Alexei N. and Zarhin, Yuri G., The Brauer group of Kummer surfaces and torsion of elliptic curves, J. Reine Angew. Math. 666 (2012), 115140.Google Scholar
Várilly-Alvarado, Anthony, Weak approximation on del Pezzo surfaces of degree 1, Adv. Math. 219 (6) (2008), 21232145.Google Scholar
van Geemen, Bert, Some remarks on Brauer groups of $K 3$ surfaces, Adv. Math. 197 (1) (2005), 222247.Google Scholar
van Geemen, Bert and Sarti, Alessandra, Nikulin involutions on $K 3$ surfaces, Math. Z. 255 (4) (2007), 731753.Google Scholar
van Luijk, Ronald, $K 3$ surfaces with Picard number one and infinitely many rational points, Algebra Number Theory 1 (1) (2007), 115.Google Scholar
Voisin, Claire, Théorème de Torelli pour les cubiques de ${\mathbf{P} }^{5} $, Invent. Math. 86 (3) (1986), 577601.CrossRefGoogle Scholar
Wittenberg, Olivier, Personal letter, April 27th, 2010.Google Scholar
Wittenberg, Olivier, Transcendental Brauer–Manin obstruction on a pencil of elliptic curves, in Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math., Volume 226, pp. 259267 (Birkhäuser Boston, Boston, MA, 2004).CrossRefGoogle Scholar