Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T03:50:30.260Z Has data issue: false hasContentIssue false

CONSTANCY OF NEWTON POLYGONS OF $F$-ISOCRYSTALS ON ABELIAN VARIETIES AND ISOTRIVIALITY OF FAMILIES OF CURVES

Published online by Cambridge University Press:  14 May 2019

Nobuo Tsuzuki*
Affiliation:
Mathematical Institute, Tohoku University, Aza-Aoba 6-3, Aramaki, Aobaku, Sendai, 980-8578, Japan ([email protected])

Abstract

We prove constancy of Newton polygons of all convergent $F$-isocrystals on Abelian varieties over finite fields. Applying the constancy, we prove the isotriviality of proper smooth families of curves over Abelian varieties. More generally, we prove the isotriviality over projective smooth varieties on which any convergent $F$-isocrystal has constant Newton polygons.

Type
Research Article
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T. and Esnault, H., A Lefschetz theorem for overconvergent isocrystals with Frobenius structure, Ann. Éc. Norm. Supér. arXiv:1607.07112.Google Scholar
Berthelot, P., Cohomologie rigide et cohomologie de variétés algébriques de caractéristique p, Bull. Soc. Math. France, Mém. 23 (1986), 732.CrossRefGoogle Scholar
Berthelot, P., Cohomologie rigide et cohomologie rigide à supports propres, Première partie, Preprint, 1996.Google Scholar
Berthelot, P., Finitude et pureté cohomologique en cohomologie rigide (avec un appendice par Aise Johan de Jong), Invent. Math. 128 (1997), 329377.CrossRefGoogle Scholar
Chiarellotto, B. and Le Stum, B., F-isocristaux unipotents, Compos. Math. 116(1) (1999), 81110.CrossRefGoogle Scholar
Chiarellotto, B. and Le Stum, B., Pentes en cohomologie rigide et F-isocristaux unipotents, Manuscripta Math. 100(4) (1999), 455468.CrossRefGoogle Scholar
Chiarellotto, B. and Tsuzuki, N., Cohomological descent of rigid cohomology for etale coverings, Rend. Semin. Mat. Univ. Padova 109 (2003), 63215.Google Scholar
Chiarellotto, B. and Tsuzuki, N., Logarithmic growth and Frobenius filtrations for solutions of p-adic differential equations, J. Inst. Math. Jussieu 8(3) (2009), 465505.CrossRefGoogle Scholar
Christol, G. and Mebkhout, Z., Sur le théorème de l’indice deséquations différentielles p-adiques IV, Invent. Math. 143 (2001), 629672.CrossRefGoogle Scholar
Crew, R., Specialization of crystalline cohomology, Duke Math. J. 53(3) (1986), 749757.CrossRefGoogle Scholar
Crew, R., F-isocrystals and p-adic representations, in Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proceedings of Symposia in Pure Mathematics, Volume 46, Part 2, pp. 111138 (American Mathematical Society, Providence, RI, 1987).CrossRefGoogle Scholar
Debarre, O., Variétés rationnellement connexes, Séminaire N. Bourbaki, 2001-2002, exp. no 905, 243–266.Google Scholar
De Jong, A. J. and Oort, F., Purity of the stratification by Newton polygons, J. Amer. Math. Soc. 13(1) (2000), 209241.CrossRefGoogle Scholar
De Jong, A. J. and Starr, J., Every rationally connected variety over the function field of a curve has a rational point, Amer. J. Math. 125 (2003), 567580.CrossRefGoogle Scholar
Del Padrone, A. and Mistretta, E., Families of curves and variation in moduli, Matematiche (Catania) 61(1) (2006), 163177.Google Scholar
Demazure, M., Lectures on p-divisible groups, Lecture Notes in Mathematics, Volume 302, (Springer, Berlin, New York, 1972).CrossRefGoogle Scholar
Diaz, S., Complete subvarieties of the moduli space of smooth curves, in Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proceedings of Symposia in Pure Mathematics, Volume 46, Part 1, pp. 7781 (American Mathematical Society, Providence, RI, 1987).CrossRefGoogle Scholar
Elkik, R., Solutions d’équations à coefficients dans un anneau hensélien, Ann. Sci. Éc. Norm. Supér. 6 (1973), 553604.CrossRefGoogle Scholar
Esnault, H. and Shiho, A., Convergent isocrystals on simply connected varieties, Annales de l’Institut Fourier 68 (2018), 21092148.CrossRefGoogle Scholar
Esnault, H. and Shiho, A., Chern classes of crystals, Trans. Amer. Math. Soc. 371(2) (2019), 13331358.CrossRefGoogle Scholar
Etesse, J.-Y. and Le Stum, B., Fonctions L associées aux F-isocristaux surconvergents, I. Interprétation cohomologique, Math. Ann. 296 (1993), 557576.CrossRefGoogle Scholar
Faltings, G. and Chai, C.-L., Degenerations of Abelian Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, no. 3, Volume 22 (Springer, 1990).CrossRefGoogle Scholar
Fontaine, J.-M., Représentations p-adiques des corps locaux. I, in The Grothendieck Festschrift, Vol. II, Progress in Mathematics, Volume 87, pp. 249309 (Birkhäuser Boston, Boston, MA, 1990).Google Scholar
Grothendieck, A., Séminaire de Geométrie Algébrique, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2), Advanced Studies in Pure Mathematics, Volume 2 (North-Holland Publishing Co., Amsterdam; Masson & Cie, Éditeur, Paris, 1968).Google Scholar
Grothendieck, A., Représentations linéaires et compactifications profinies des groupes discrets, Manuscripta Math. 2 (1970), 375396.CrossRefGoogle Scholar
Grothendieck, A., Revêtement étales et groupe fondamentale (SGA1), Lecture Notes in Mathematics, Volume 224, (Springer-Verlag, 1971).CrossRefGoogle Scholar
Hartshorne, R., Algebraic Geometry, GTM, Volume 52 (Springer-Verlag, New York-Heidelberg, 1977).CrossRefGoogle Scholar
Katz, N. M., p-adic properties of modular schemes and modular forms, in Modular Functions of One Variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Mathematics, Volume 350, pp. 69190 (Springer, Berlin, 1973).Google Scholar
Katz, N. M., Slope Filtration of F-crystals, Journées de Geométrie Algébriques (Rennes, 1978), Astérisque 63 (1979), 113164.Google Scholar
Kedlaya, K. S., Full faithfulness for overconvergent F-isocrystals, in Geometric Aspects of Dwork Theory, pp. 819835 (de Gruyter, Berlin, 2004).Google Scholar
Kedlaya, K. S., Finiteness of rigid cohomology with coefficients, Duke Math. J. 134(1) (2006), 1597.CrossRefGoogle Scholar
Kedlaya, K. S., Semistable reduction for overconvergent F-isocrystals. I. Unipotence and logarithmic extensions, Compos. Math. 143(5) (2007), 11641212.CrossRefGoogle Scholar
Kedlaya, K. S., Semistable reduction for overconvergent F-isocrystals, II: A valuation-theoretic approach, Compos. Math. 144(3) (2008), 657672.CrossRefGoogle Scholar
Kedlaya, K. S., Slope filtrations for relative Frobenius. Repésentations p-adiques de groupes p-adiques. I. Représentations galoisiennes et (𝜑, 𝛤)-modules, Astérisque 319 (2008), 259301.Google Scholar
Kedlaya, K. S., Notes on isocrystals, Preprint, 2016, arXiv:1606.01321.Google Scholar
Kedlaya, K. S., Étale and crystalline companions, I, Preprint, 2018, arXiv:1811.00204.Google Scholar
Kóllar, J., Rational Curves on Algebraic Varieties, EMG, Volume 32 (Springer-Verlag, Berlin, 1996).CrossRefGoogle Scholar
Lazda, C., Incarnations of Berthelot’s Conjecture, J. Number Theory 166 (2016), 137157.CrossRefGoogle Scholar
Liedtke, C., Algebraic surfaces in positive characteristic, in Birational Geometry, Rational Curves, and Arithmetic, pp. 229292 (Springer, 2013).CrossRefGoogle Scholar
Malcev, A., On isomorphic matrix representations of infinite groups, Mat. Sb.N.S. 8 (1940), 405422.Google Scholar
Manin, Y. I., Theory of commutative formal groups over fields of finite characteristic (in Russian), Uspekhi Mat. Nauk 18(6) (1963), 390. English translation in Russian Math. Surveys, Volume 18, no. 6, 1–83 (1963).Google Scholar
Milne, J. S., Étale Cohomology, PM, Volume 33 (Princeton University Press, 1980).Google Scholar
Milne, J. S., Jacobian varieties, in Chapter VII in Arithmetic Geometry (ed. Cornell, G. and Silverman, J. H.), pp. 167212 (Springer, New York, 1986).CrossRefGoogle Scholar
Moret-Bailly, L., Pinceaux de variétés abéliennes, Astérisque 129 (1985).Google Scholar
Mumford, D., Fogarty, J. and Kirwan, F., Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 2 (Springer, Folge, 1994).CrossRefGoogle Scholar
Ogus, A., F-isocrystals and de Rham cohomology II - Convergent isocrystals, Duke Math. J. 51(4) (1984), 765850.CrossRefGoogle Scholar
Oort, F., Subvarieties of moduli spaces, Invent. Math. 24 (1974), 95119.CrossRefGoogle Scholar
Raynaud, M., Sections des fibres vectoriels une courbe, Bull. Soc. Math. France 110 (1982), 103125.CrossRefGoogle Scholar
Saïdi, M., On complete families of curve with a given fundamental group in positive characteristic, Manuscripta Math. 118 (2005), 425441.CrossRefGoogle Scholar
Sernesi, E., Deformations of Algebraic Schemes, Grundlehren der Mathematischen Wissenschaften Book, Volume 334 (Springer-Verlag, Berlin, 2006).Google Scholar
Shiho, A., Parabolic log convergent isocrystals, Preprint, 2010, arXiv:1010.4364.Google Scholar
Shiho, A., A note on convergent isocrystals on simply connected varieties, Preprint, 2014, arXiv:1411.0456.Google Scholar
Szpiro, L., Propriétés numériques du faisceau dualisant relatif, Séminaire sur les pinceaux de courbes de genre au moins deux, Astérisque 86 (1981), 4478.Google Scholar
Tamagawa, A., Finiteness of isomorphism classes of curves in positive characteristic with prescribed fundamental groups, J. Algebraic Geom. 13 (2004), 675724.CrossRefGoogle Scholar
Tsuzuki, N., The overconvergence of morphisms of etale 𝜑-𝛻-spaces on a local field, Compos. Math. 103 (1996), 227239.Google Scholar
Tsuzuki, N., Slope filtration of quasi-unipotent overconvergent F-isocrystals, Ann. Inst. Fourier (Grenoble) 48(2) (1998), 379412.CrossRefGoogle Scholar
Tsuzuki, N., Cohomological descent of rigid cohomology for proper coverings, Invent. Math. 151 (2003), 101133.CrossRefGoogle Scholar
Tsuzuki, N., On base change theorem and coherence in rigid cohomology, Documenta Math. Extra Volume (2003), 891918. Kazuya Kato’s fiftieth birthday.Google Scholar
Xu, D., On Higher direct images of convergent isocrystals, Preprint, 2018, arXiv:1802.09060.Google Scholar
The Stacks Project Authors, https://stacks.math.columbia.edu, 2019.Google Scholar