No CrossRef data available.
Article contents
Some statistical aspects of the Continuous Mortality Investigation Bureau's mortality investigations
Published online by Cambridge University Press: 20 April 2012
Abstract
This article discusses the formulae for the select and ultimate exposed-to-risk in the CMIB's mortality studies, and certain statistical aspects of these investigations. It is shown that there are difficulties in the traditional binomial approach to the distribution of deaths, particularly for select rates, and the use of the Poisson distribution, rather than the binomial, is advocated.
- Type
- Research Article
- Information
- Copyright
- Copyright © Institute and Faculty of Actuaries 1991
References
(1) CMIR 1 (1973). Consolidated Rules of the Continuous Mortality Investigation Bureau. 7–14. Institute of Actuaries and Faculty of Actuaries.Google Scholar
(2) Hoem, J. M. (1984). A flaw in actuarial exposed-to-risk theory. Stockholm Research Reports in Demography, 15, University of Stockholm.Google Scholar
(3) Weck, F. A. (1947). The mortality rate and its derivation from actual experience. Rec. Am. Inst. Actuaries, 36, 23–54.Google Scholar
(4) Scott, W. F. (1982). Some applications of the Poisson distribution in mortality studies. T.F.A. 38, 255–63 and T.F.A. 39, 419–20.Google Scholar
(5) Scott, W. F. (1988). On the theory of graduation of mortality tables. Proc. XXIIInd International Congress of Actuaries, Finland, 341–72.Google Scholar
(6) Forfar, D. O., McCutcheon, J. J. & Wilkie, A. D. (1988 & 1990). On graduation by a mathematical formula (with discussion.) J.I.A. 115, 1–149 and T.F.A. 41, 97–269.Google Scholar
(7) CMIR 9 (1988). The graduation of the 1979–82 mortality experience. 1–102. Institute of Actuaries and Faculty of Actuaries.Google Scholar