Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T03:38:39.824Z Has data issue: false hasContentIssue false

Johann Heinrich Lambert (1728–1777)

Published online by Cambridge University Press:  20 April 2012

Extract

1.1. This paper is intended as a tribute to a man who died at the age of 49 just over 200 years ago having made material contributions to what is now regarded as actuarial science, as well as to many other branches of science, but whose work has largely been overlooked.

1.2. Johann Heinrich Lambert was born in Mulhouse, Alsace on 26 August 1728 and died in Berlin on 25 September 1777. He was largely self-taught, having had to leave school at the age of 12 to help his father in his tailor's shop. At the age of 20 he became tutor to the children of a noble Swiss family; this ended 10 years later when he had taken the children on an educational tour of Europe during which he was able to meet eminent scientists of the time and go to lectures at universities and learned societies. Eventually, in 1765, he obtained a post at the Royal Academy of Sciences in Berlin where he stayed until his death.

Type
Research Article
Copyright
Copyright © Institute and Faculty of Actuaries 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernoulli, D. (1766). Essai d'une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l'inoculation pour la prévenir. Méin. de I'Acad. Roy. des Sciences de I'Année 1760, pp. 145. Paris. (U)Google Scholar
Bradley, L. (1971). Smallpox Inoculation: An Eighteenth Century Mathematical Controversy. University of Nottingham, Adult Education Department. (A)Google Scholar
Daw, R. H. (1979). Smallpox and the double decrement table. A piece of actuarial pre-history. J.I.A. 106, 299.Google Scholar
Edmonds, T. R. (1832) Life tables. founded won the discovery of a numerical law relating the existence of every human being: London. (A)Google Scholar
Eisenring, M. E. (1948). Bemerkungen zu den Sterbetafeln von J. H. Lambert. Mitt. Verein. Schweiz Versich.-Mathr. 48, 116. (A)Google Scholar
Girson, G. A. (1926). An elementary treatise on the Calculus. London: Macmillan. (A)Google Scholar
Gompertz, B. (1825). On the nature of the function expressive of the Law of Human Mortality. Phil. Trans. 115, 513. (A)Google Scholar
Gray, J. J. and Tilling, L. (1978). Johann Heinrich Lambert, Mathematician and Scientist, 1728–1777. Historia Mathematica, 5, 13. (SC.)CrossRefGoogle Scholar
Karup, J. (1899). On a new mechanical method of graduation. Trans, Second Int. Actu. Congress. 78.Google Scholar
Lambert, J. H. (17651772). Beyträge zum Gebmuche der Mathematik und deren Antwendung. Berlin. U, B) (1765). Theorie der Zuverläszigkeit der Beobachtungen und Versuche. Vol. I, p. 424 488. (1772). Anmerkungen ̈ber die Sterblichkeit, Todtenlisten, Geburthen und Ehen. Vol. III, p. 475–599. This consists of sections numbered 1 to 7.Google Scholar
Leibnitz, G. G. (1686) Meditatio nova de natura anguli contatus et osculi. Acta Eruditorum, 289. (SC)Google Scholar
Loewy, A. (1927). Johann Heinrich Lambert's Bedeutung f̈r die Grundlägen des Versicherungswesens. In Festgabe f̈r Alfred Manes, Ed. by Dorn, H. Berlin: Mittler & Sohn. (A)Google Scholar
Makeham, W. M. (1867). On the Law of Mortality. J.I.A. 13, 325.Google Scholar
Ogborn, M. E. (1953). On the nature of the function expressive of the Law of Human Mortality. J.I.A. 79, 170.Google Scholar
Sheynin, O. B. (1971). J. H. Lambert's work on probability. Arch.for Hist. of Exact Sci. 7, 244. (SC)CrossRefGoogle Scholar
Sprague, T. B. (1867). On the value of Annuities payable Half-yearly, Quarterly, etc. Part III. J.I.A. 13, 305.Google Scholar
Sprague, T. B. (1880). Explanation ova New Formula for Interpolation. J.I.A. 22, 270.Google Scholar
Steck, M. (1970). Bibliographia Lambertiana. Hildesheim: Gerstenberg. (SC)Google Scholar
Süssmilch, J. P. (1761). Die göttliche Ordnung in den Veränderungen des menschlichen Geschlechts, aus der Geburt, dem Tode und der Fortpflanzung desselben erwiesen. Berlin. (A)Google Scholar
Tilling, L. (1973). The interpretation of observational errors in the 18th and early 19th centuries. University of London Ph.D. thesis (unpublished).Google Scholar
Tilling, L. (1975). Early experimental graphs. Brit. J. for Hist. of Sci. 8, 193. (SC)CrossRefGoogle Scholar