Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T03:26:20.910Z Has data issue: false hasContentIssue false

Early uses of Graunt's life table

Published online by Cambridge University Press:  20 April 2012

Extract

The first life table was a brilliant ‘guesstimate’ by John Graunt (1662) based on mortality data analysed by cause of death but not by age or sex. It was over thirty years before Halley (1693) constructed a table to show “the odds that there is, that a Person of that [any] Age does not die in a Year”. In the meantime several writers tried to use Graunt's figures to make deductions about probabilities of death. This note is a description of these efforts.

Type
Research Article
Copyright
Copyright © Institute and Faculty of Actuaries 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chateleux, P. J. L. De (1937) Le rapport de Johan de Witt sur le calcul des rentes viagères. Verzek.-Arch. 18, 41.Google Scholar
David, F. N. (1962) Games, Gods and Gambling, Griffin, London.Google Scholar
Graunt, J. (1662) Natural and Political Observations … made upon the Bills of Mortality. Roycroft, T., London. [Reproduced “in a more modern format” in J.I.A. 90, 1.]Google Scholar
Halley, E. (1693) An Estimate of the Degrees of the Mortality of Mankind, drawn from curious Tables of the Births and Funerals at the City of Breslaw; with an Attempt to ascertain the Price of Annuities upon Lives. Phil. Trans. Roy. Soc. 17, 596.CrossRefGoogle Scholar
Hendriks, F. (1852, 1853) Contributions to the history of insurance, and of the theory of life contingencies, with a restoration of the Grand Pensionary de Witt's treatise on life annuities. J.I.A. 2, 222; 3, 93.Google Scholar
Huygens, Chr. (1657) Tractatus, de Ratiociniis in Aleæ Ludo. (Issued as part of F. Schooten's Exercitationum Mathematicarum. Libri Quinque. J. Elsevir, Lund Batav.)Google Scholar
Orchard, W. (1852) On de Witt's hypothesis as to the rate of mortality. J.I.A., 2, 393.Google Scholar
Van, Rooijen. J. P. (1937) Le rapport de Johan de Witt sur le calcul des rentes viagères: Commentaire et historique. Verzek.-Arch. 18, 72.Google Scholar
Schevichaven, J. Van et al. (1898) Mèmoires pour servir à l'histoire des assurances sur la vie et des rentes viagères aux Pays-Bas. Algemeene Maats. Levensverzek.-Lijf., Amsterdam.Google Scholar
Schevichaven, J. VAN et al. (1901) Notice succincte sur le marché de la science actuarielle dans les Pays-Bas (Hollande), depuis ses débuts, jusqu'à la fin du XIXe siècle. Troisième Cong. Internat. Actu., Paris, 885.Google Scholar
Sutherland, I. (1963) John Graunt: A tercentenary tribute. J. Roy. Statist. Soc. A 126, 537.CrossRefGoogle Scholar
Walford, C. (1871) The Insurance Cyclopaedia. (Article: Annuities on Lives, Hist. of). C. & E. Layton, London.Google Scholar
Westergaard, H. (1901) Die Lehre von der Mortalität und Morbilität. G. Fischer, Jena.Google Scholar
Witt, J. De (1671) Waerdye van Lyf-renten naer proportie van Los-renten. J. Scheltus, The Hague.Google Scholar