Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T06:40:12.375Z Has data issue: false hasContentIssue false

A Statistical Review of the Evidence for the Existence of Temporary Selection

Published online by Cambridge University Press:  18 August 2016

Hilary L. Seal
Affiliation:
Department of Zoology, Yale University

Extract

The theory of ‘temporary selection’ is concerned with the variation, for fixed x, of q[x–t]+t the observed rate of mortality at age x during the t+1th year after the issue of an assurance or annuity contract. The classical view is that—apart from chance variations—q[x–t]+t increases gradually with increasing t until the effects of selection have disappeared after which time q[xx–t]+t is a constant depending on x only.

Various reasons have been suggested for the persistence of temporary selection in an observed series of values of q[xx–t]+t. The chief of these are:

(1) The continuing effects of an initial selection on the part of the assurance company or by the annuitant (Morgan, 1834);

(2) The gradual withdrawal from assurance of healthy lives (Higham, 1851); and

(3) Secular improvements in medicals election or in the self-selection of annuitants (Karup, 1903).

Type
Research Article
Copyright
Copyright © Institute and Faculty of Actuaries 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Aty, S. H. (1954). Approximate formulae for the percentage points and the probability integral of the non-central X2 distribution. Biometrika, 41, 538–40.Google Scholar
Abel, A. (1914). Wirkungen der Auslese in der Versichertensterblichkeit der deutschen Lebensversicherung. Schr. Zentralstelle gemein. dtsch. Sterbtichkeits-Unter-suchungen.Google Scholar
Ackland, T. G. (1907). Notes on the British Offices Life Annuity Tables (1893). T.F.A. 3, 285349.Google Scholar
Ackland, T. G., Hardy, G. F., Baker, H. J. & Chatham, J. (1903). An account of the principles and methods adopted in the compilation of the data, the graduation of the experience and the construction of deduced tables. British Offices Life Tables 1893. London.Google Scholar
Aitken, A. C. (1939). Statistical Mathematics. Edinburgh.Google Scholar
Bartlett, W. H. C. (1875). Report of the Mortuary Experience of The Mutual Life Insurance Company of New York from 1843 to 1874. New York.Google Scholar
Borel, E. (1939). Valeur pratique et Philosophie des Probabilités. Paris.Google Scholar
Bortkiewicz, L. V. (1917). Die Iterationen. Berlin.CrossRefGoogle Scholar
*Brown, S. (1869). The Mortality Experience of Life Assurance Companies, collected by the Institute of Actuaries. London.Google Scholar
Buchanan, J. (1927). The theory of selection: its history and development. T.F.A. 11, 43104.Google Scholar
Cantelli, F. (1914). Genesi e costruzione delle tavole di mutualità. Boll. Notiz. Cred. Previd.Google Scholar
Chatham, J. (1891). An examination of the published experience of several life offices and groups of life offices, etc. F.I.A. 29, 81184.Google Scholar
Cochran, W. G. (1954). Some methods for strengthening the common x2 tests. Biometrics, 10, 417–51.Google Scholar
Deparcieux, A. (1746). Essai sur les Probabilités de la Durée de la Vie Humaine. Paris.Google Scholar
Duplaix, H., Oltramare, F. & Quiquet, A. (1902). Tables de Mortalité 1900 des Rentiers et Assurés en Cas de Vie. Paris.Google Scholar
Ebihara, K. et al. (1910). Japanese Three Offices Life Tables. Tokyo.Google Scholar
Elderton, W. P. (1906). On a form of spurious selection which may arise when mortality tables are amalgamated. F.I.A. 40, 221–46.Google Scholar
Elderton, W. P. & Ogborn, M. E. (1943). The mortality of adult males since the middle of the eighteenth century as shown by the experience of life assurance companies. J. R. Statist. Soc. 106, 130.CrossRefGoogle Scholar
Engelbrecht, G. (1905). Die Wirkung der Auslese auf die Sterblichkeit in den ersten Versicherungsjahren. Z. ges. Versich Wiss. 5, 6679.Google Scholar
Engelbrecht, G. (1906). Der Einfluss der Versicherungsdauer auf die Sterblichkeit in der Lebensversicherung. Z. ges. VersichWiss. 6, 108–52.Google Scholar
Finlaison, A. J. (1884). Report on the mortality of government life annuitants. Government Annuities Act, 1882: Copy of the Treasury Minute, dated 7 September 1883. London.Google Scholar
Fisher, R. A. (1954). Statistical Methods for Research Workers. Edinburgh.Google Scholar
Galloway, T. (1841). Table of Mortality deduced from the Experience of the Amicable Society for a Perpetual Assurance Office, during a Period of 33 years, ending April 5, 1841. London.Google Scholar
Hardy, G. F. (1904). The British Offices Life Tables, 1893. Memorandum on the graduation of the whole-life without-profit mortality table-male lives. F.I.A. 38, 501–32.Google Scholar
Higham, J. A. (1851). On the value of selection as exercised by the policy-holder against the company. F.I.A. I, 179202.Google Scholar
*Higham, C. D. & Low, G. M. (1900). Combined Experience of Assured Lives (1863-1801) Unadjusted Data: Whole-Life Assurance: Males. London.Google Scholar
Höckner, G. (1934). Einfach und dippelt abgestufte Sterbetafeln. Möglichkeit der Herabsetzung des Auslesezeitraumes. Atti Dec. Congr. Int. Attu. 2, 201–10.Google Scholar
Hoel, P. G. (1945). Testing the homogeneity of Poisson frequencies. Ann. Math. Statist. 16, 362–8.Google Scholar
Jäderin, E., Fredholm, I. et al. (1915). Undersökning of Dödligheten enligt Erfarenhetenhos Sjutton Svenska LifförsÄkringsbolag. Stockholm.Google Scholar
Karup, J. (1903). Die Reform des Rechnungswesens der Gothaer Lebensversicherungsbank, a. G. Jena.Google Scholar
Kersseboom, W. (1742). Derde Verhandeling over de Probable Meenigte des Volks in de Provintie van Hollandt en Westvrieslandt. The Hague.Google Scholar
Kihm, C. (1904). Die Sterblichkeit der schweizerischen Rentner. Proc. Fourth Int. Congr. Actu. I, 214338. New York.Google Scholar
Kimball, A. W. (1954). Short-cut formulas for the exact partition of X2 in contingency tables. Biometrics, 10, 452–8.Google Scholar
Klang, J. et al. (1907). Absterbe-Ordnungen aus Beobachtungen an österreichischen Versicherten. Vienna.Google Scholar
Lohmüller, A. (1907). Sterblichkeitsuntersuchungen auf Grund des Materials der Stuttgarter Lebensversicherungsbank a. G. 1854-1901. Jena.Google Scholar
Macaulay, T. B. (1894). The influence of the age at entrance on the force of selection. Trans. Actu. Soc. Amer. 3, 177220.Google Scholar
*Manly, H. W. & Deuchar, D. (1899). Combined Experience of Life Annuitants (1863-1893). Unadjusted Data. London.Google Scholar
*Manly, H. W. & Deuchar, D. (1900). Combined Experience of Assured Lives (1863-1893). Unadjusted Data: Endowment-Assurances and Minor Classes of Assurance: Male and Female. London.Google Scholar
Miller, B. J. (1880). Mortuary Experience of The Mutual Benefit Life Insurance Company, Newark N. J., 1845-1879. Newark.Google Scholar
Morgan, A. (1834). Tables showing the Total Number of Persons assured in The Equitable Society from its Commencement in September 1762, to January 1, 1829, etc. London.Google Scholar
Nolfi, P. (1951). Betrachtungen über konsekutive Verteilungen. Mitt. Verein. Schweiz. Versich. Mathr. 51, 5362.Google Scholar
Ormody, W. Von & Altenburger, T. (1910). Die Sterblichkeit der Ungarischen Versicherten. Budapest.Google Scholar
Patnaik, P. B. (1948). The power function of the test for the difference between two proportions in a 2 × 2 table. Biometrika, 35, 157–75.Google Scholar
Poisson, S. D. (1837). Recherches sur la Probabilité des Fugements en Matière criminelle et en Matière civile. Paris.Google Scholar
Sanderson, F. (1895). Mortality Experience of the Canada Life Assurance Company from 1847 to 1893. Hamilton.Google Scholar
Seal, H. L. (1943). Tests of a mortality table graduation. F.I.A. 71, 567.Google Scholar
Seal, H. L. (1948). The probability of decrements from a population. A study in discrete random processes. Skand. Akt. 31, 1445.Google Scholar
Seal, H. L. (1949). Mortality data and the Binomial probability law. Skand. Akt. 32, 188216.Google Scholar
Spens, W. (1861). Tables of the Mortality Experience of The Scottish Amicable Life Assurance Society from 1826 to 1860. Glasgow.Google Scholar
Spens, W. (1863). Observations on the Tables of the Mortality Experience of The Scottish Amicable Society. F.I.A. 10, 6182.Google Scholar
Sprague, T. B. (1870). On the rate of mortality prevailing among assured lives, as influenced by the length of time for which they have been assured. F.I.A. 15, 328–54.Google Scholar
Sprague, T. B. (1884). Report of Mr Sprague, President of the Institute of Actuaries, on the conclusions of Mr Finlaison. Government Annuities Act, 1882: Copy of the Treasury Minute, dated 7th September 1883. London.Google Scholar
Sprague, T. B. (1896). Maximum mortality percentages. F.I.A. 32, 197200.Google Scholar
Sprague, T. B. (1904). Mr Moir's paper: maximum mortality periods. T.F.A. I, 185–6.Google Scholar
Walsh, J. E. (1952). Large sample validity of the binomial distribution for lives with unequal mortality rates. Skand. Akt. 35, 1115.Google Scholar
Walsh, J. E. (1956). Actuarial validity of the Binomial distribution for large numbers of lives with small mortality probabilities. Skand. Akt. 39, 3946.Google Scholar
Weeks, R. W. (1896). Mortality experience on annuitants (European and American) in American life insurance companies. Trans. Actu. Soc. Amer. 4, 275307.Google Scholar
Wells, D. H. (1884). Mortality Experience of the Connecticut Mutual Life Insurance Company, of Hartford, Conn., from 1846 to 1878. Hartford.Google Scholar
Yastremski, B. et al. (1916). Tables de Mortalité Russes des 9 Compagnies d'Assurances. Petrograd.Google Scholar
Zillmer, A. et al. (1883). Deutsche Sterblichkeits-Tafeln aus den Erfahrungen von dreiundzwanzig Lebensversicherungs-Gesellschaften. Berlin.Google Scholar
* In the above list of references, Institute and Faculty publications have been indexed under the names of the Presidents at the time, in conformity with the practice of Austro-Hungarian, French, German, Japanese, Russian, and Swedish actuarial associations.Google Scholar