Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T12:32:07.402Z Has data issue: false hasContentIssue false

Varieties of topological algebras

Published online by Cambridge University Press:  09 April 2009

Walter Taylor
Affiliation:
Department of Mathematics, University of Colorado, Boulder, Colorado 80309, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By a variety of topological algebras we mean a class V of topological algebras of a fixed type closed under the formation of subalgebras, products and quotients (i.e. images under continuous homomorphisms yielding the quotient topology). In symbols, V = SV = PV = QV. if V is also closed under the formation of arbitrary continuous homomorphic images, then V is a wide variety. variety. As an example we have the full variety V = Modr (Σ), the class of all topological algebras of a fixed type τ obeying a fixed set Σ of algebraic identities. But not every wide variety is full, e.g. the class of all indiscrete topological algebras of a fixed type; in fact, as Morris observed (1970b), there exists a proper class of varieties of topological groups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1977

References

Baldwin, J. T. and Berman, J. (to appear), ‘A model-theoretical approach to Mal'cev conditions’, J. Symbolic Logic.Google Scholar
Banaschewski, B. and Herrlich, H. (1976), ‘Subcategories defined by implications’, Houston J. Math. 2, 149171.Google Scholar
Birkhoff, Garrett (1948 and 1967), Lattice Theory (Amer. Math. Soc. Colloquium Publications, 25. New York).Google Scholar
Bloom, Stephen L. (1976), ‘Varieties of ordered algebras’, J. Computer System Sci. 13, 200212.CrossRefGoogle Scholar
Boardman, J. M. and Vogt, R. M. (1973), Homotopy Invariant Algebraic Structures on Topological Spaces (Lecture Notes in Mathematics, 347. Springer-Verlag, Berlin, Heidelberg, New York, 1973).CrossRefGoogle Scholar
Brooks, M. S., Morris, Sidney A. and Saxon, Stephen A. (1973), ‘Generating varieties of topological groups’, Proc. Edinburgh Math. Soc. (2) 18, 191197.CrossRefGoogle Scholar
БургиН, M. C. [Burgin, M. S.] (1972), “Scy;воб6одНыи Топологические грппы и униВерсальые алгебры’ [Free topological groups and universal algebras], Dokl. Akad. Nauk SSSR 204, 911, Soviet Math. Dokl. 13, 561–564.Google Scholar
БургиН, M. C. [Burgin, M. S.] (1973), “Топологические алгебры с непрерыВНыМи сстеМаМОперяий’ [Topological algebras with continuous systems of operations], Dokl. Akad. Nauk SSSR 213, 505508; Soviet Math. Dokl. 14, 1711–1715.Google ScholarPubMed
Cohn, P. M. (1965), Universal Algebra (Harper's Series in Modern Mathematics. Harper and Row, New York, Evanston, London, 1965).Google Scholar
Crawley, P. and Dilworth, R. P. (1973), Algebraic Theory of Lattices (Prentice-Hall, Englewood Cliffs, 1973).Google Scholar
Csákány, B. (1970), ‘Characterizations of regular varieties.’ Acta Sci. Math. (Szeged) 31, 187189.Google Scholar
Diestel, J., Morris, Sidney A. and Saxon, Stephen A. (1972), ‘Varieties of linear topological spaces,’ Trans. Amer. Math. Soc. 172, 207230.CrossRefGoogle Scholar
Dixon, P. G. (1976), ‘Varieties of Banach algebras,’ Quart. J. Math. (Oxford) (2) 27, 481–187.CrossRefGoogle Scholar
Edgar, G. A. (1973), ‘The class of topological spaces is equationally definable,’ Algebra Universalis 3, 139146.CrossRefGoogle Scholar
Findlay, G. D. (1960), ‘Reflexive homomorphic relations,’ Canad. Math. Bull. 3, 131132.CrossRefGoogle Scholar
Gerhard, J. A. (1971), ‘Subdirectly irreducible idempotent semigroups,’ Pacific J. Math. 39, 669676.CrossRefGoogle Scholar
Grätzer, George (1968), Universal Algebra (The University Series in Higher Mathematics. Van Nostrand, Princeton, New Jersey, Toronto, London, Melbourne, 1968).Google Scholar
Grätzer, G. (1970), ‘Two Mal'cev-type theorems in universal algebra,’ J. Combinatorial Theory 8, 334342.CrossRefGoogle Scholar
Hagemann, J. (to appear), ‘On regular and weakly regular congruences,’ Algebra Universalis.Google Scholar
Hagemann, J. (preprint), ‘Foundations of universal topological algebra I.’Google Scholar
Jónsson, Bjarni (1953), ‘On the representation of lattices,’ Math. Scand. 1, 193206.CrossRefGoogle Scholar
Kannan, V. (1972), ‘Reflexive cum coreflexive subcategories in topology,’ Math. Ann. 195, 168174.CrossRefGoogle Scholar
Kelley, J. L. (1955), General Topology (Van Nostrand, Princeton, New Jersey, 1955).Google Scholar
МалbцеВ, A. И. [Mal'cev, A. I.] (1954), “К обШей теории алгебраических систем’ [On the general theory of algebraic systems], Mat. Sb. (NS) 35 (77), 320; Amer. Soc. Transl. (2) 27 (1963), 125–142.Google Scholar
МаркоВА, А. А, А. [Markov, A. A.] (1945), “О сВободНых Топологическч группач” [On free topological groups], Izv. Akad. Nauk SSSR Ser. Mat. 9, 364; Amer. Math. Soc. Transl. 30 (1950), 11–88; reprinted Amer. Math. Soc. Transl. (1) 8 (1962), 195–272.Google ScholarPubMed
Morris, Sidney A. (1969), ‘Varieties of topological groups,’ Bull. Austral. Math. Soc. 1, 145160.CrossRefGoogle Scholar
Morris, Sidney A. (1970a), ‘Varieties of topological groups II,’ Bull. Austral. Math. Soc. 2, 113.CrossRefGoogle Scholar
Morris, Sidney A. (1970b), ‘Varieties of topological groups III,’ Bull. Austral. Math. Soc. 2, 165178.CrossRefGoogle Scholar
Morris, Sidney A. (1973), ‘Varieties of topological groups generated by maximally almost periodic groups,’ Colloq. Math. 28, 4750.CrossRefGoogle Scholar
Morris, Sidney A. (1974), ‘Lie groups in varieties of topological groups,’ Colloq. Math. 30, 229235.CrossRefGoogle Scholar
Mycielski, J. (1964), ‘σ–incompactness of NσBull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12, 437438.Google Scholar
Neumann, Walter D. (1974), ‘On Malcev conditions,’ J. Austral. Math. Soc. 17, 376384.CrossRefGoogle Scholar
Robinson, Abraham (1966), Non-standard Analysis (Studies in Logic and the Foundations of Mathematics, 11. North Holland, Amsterdam, 1966).Google Scholar
Schmidt, Wolfgang M. (1971), ‘Approximation to algebraic numbers,’ Enseignement Math. (2) 17, 187253.Google Scholar
Świerczkowski, S. (1964), ‘Topologies in free algebras,’ Proc. London Math. Soc. (3) 14, 566576.CrossRefGoogle Scholar
Taylor, Walter (1971), ‘Some constructions of compact algebras,’ Ann. Math. Logic 3, 395435.CrossRefGoogle Scholar
Taylor, Walter (1972), ‘Residually small varieties,’ Algebra Universalis 2, 3353.CrossRefGoogle Scholar
Taylor, Walter (1973), ‘Characterizing Mal'cev conditions,’ Algebra Universalis 3, 351397.CrossRefGoogle Scholar
Taylor, Walter (1974), ‘Uniformity of congruences,’ Algebra Universalis 4, 342360.CrossRefGoogle Scholar
Taylor, Walter (1975a), ‘Topological laws for topological varieties,’ Notices Amer. Math. Soc. 22, A618–A619, Abstract # 75T-A227.Google Scholar
Taylor, Walter (1975b), ‘Varieties of topological algebras,’ Notices Amer. Math. Soc. 22, A506, Abstract # 75T-A185.Google Scholar
Taylor, Walter (1976), ‘Pure compactifications in quasi-primal varieties,’ Canadian J. Math. 28, 5062.CrossRefGoogle Scholar
Taylor, Walter (to appear), ‘Varieties obeying homotopy laws,’ Canadian J. Math.Google Scholar
Wille, Rudolf (1970), Kongruenzklassengeometrien (Lecture Notes in Mathematics, 113. Springer-Verlag, Berlin, Heidelberg, New York, 1970).CrossRefGoogle Scholar