Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T23:22:19.592Z Has data issue: false hasContentIssue false

UNIQUENESS OF TRACES ON LOG-POLYHOMOGENEOUS PSEUDODIFFERENTIAL OPERATORS

Published online by Cambridge University Press:  31 May 2011

C. DUCOURTIOUX*
Affiliation:
Département de Mathématiques, Université Pascal Paoli, 20250 Corte, France (email: [email protected])
M. F. OUEDRAOGO
Affiliation:
Département de Mathématiques, Université de Ouagadougou, 03 BP 7021, Burkina Faso (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show how to derive the uniqueness of graded or ordinary traces on some algebras of log-polyhomogeneous pseudodifferential operators from the uniqueness of their restriction to classical pseudodifferential ones.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

References

[1]Bourbaki, N., ‘Algèbre linéaire’, in: Algèbre, 3rd edn (Hermann, Paris, 1962), Ch. 2.Google Scholar
[2]Braverman, M., ‘Symmetrized trace and symmetrized determinant of odd class pseudo-differential operators’, J. Geom. Phys. 59(4) (2009), 459474.CrossRefGoogle Scholar
[3]Cardona, A., Ducourtioux, C., Magnot, J.-P. and Paycha, S., ‘Weighted traces on algebras of pseudodifferential operators and geometry on loop groups’, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002), 503540.CrossRefGoogle Scholar
[4]Guillemin, V., ‘Residue traces for certain algebras of Fourier integral operators’, J. Funct. Anal. 115 (1993), 391417.CrossRefGoogle Scholar
[5]Kassel, C., ‘Le résidu non commutatif (d’après M. Wodzicki)’ (in French) [The noncommutative residue (after M. Wodjicki)] Séminaire Bourbaki, Vol. 1988/89. Astérisque No. 177–178 (1989), Exp. No. 708, 199–229.Google Scholar
[6]Kontsevich, M. and Vishik, S., ‘Geometry of determinants of elliptic operators’, in: Functional Analysis on the Eve of the XXI Century, Vol. I, Progress in Mathematics, 131 (Birkhäuser, Boston, MA, 1995), pp. 173197.Google Scholar
[7]Kontsevich, M. and Vishik, S., ‘Determinants of elliptic pseudodifferential operators’, Max Planck Preprint, 1994.Google Scholar
[8]Lesch, M., ‘On the noncommutative residue for pseudodifferential operators with log-polyhomogeneous symbols’, Ann. Global Anal. Geom. 17 (1998), 151187.CrossRefGoogle Scholar
[9]Maniccia, L., Schrohe, E. and Seiler, J., ‘Uniqueness of the Kontsevich–Vishik trace’, Proc. Amer. Math. Soc. 136 (2008), 747752.CrossRefGoogle Scholar
[10]Paycha, S. and Scott, S., ‘A Laurent expansion for regularised integrals of holomorphic symbols’, Geom. Funct. Anal. 17 (2007), 491536.CrossRefGoogle Scholar
[11]Ponge, R., ‘Traces on pseudodifferential operators and sums of commutators’, J. Anal. Math. 110 (2010), 130.CrossRefGoogle Scholar
[12]Seeley, R. T., ‘Complex powers of an elliptic operator, singular integrals’, in: Proceedings of the Symposium in Pure Mathematics, Chicago (American Mathematical Society, Providence, RI, 1966), pp. 288307.Google Scholar
[13]Shubin, M. A., Pseudodifferential Operators and Spectral Theory, Springer Series in Soviet Mathematics (Springer, Berlin, 1987).CrossRefGoogle Scholar
[14]Wodzicki, M., ‘Noncommutative residue. I. Fundamentals’, in: K-theory, Arithmetic and Geometry (Moscow, 1984–1986), Lecture Notes in Mathematics, 1289 (Springer, New York, 1987), pp. 320399.Google Scholar