Published online by Cambridge University Press: 09 April 2009
Gelfand-type duality results can be obtained for locally convex algebras using a quasitopological structure on the spectrum of an algebra (as opposed to the topologies traditionally considered). In this way, the duality between (commutative, with identity) C*-algebras and compact spaces can be extended to pro-C*-algebras and separated quasitopologies. The extension is provided by a functional representation of an algebra A as the algebra of all continuous numerical functions on a quasitopological space. The first half of the paper deals with uniform spaces and quasitopologies, and has independent interest.