Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T21:37:44.590Z Has data issue: false hasContentIssue false

Two Results About H Functional Calculus on Analytic umd Banach Spaces

Published online by Cambridge University Press:  09 April 2009

Christian Le Merdy
Affiliation:
Département de Mathématiques Université de Franche-Comté 25030 Besancon Cedex France e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X be a Banach space with the analytic UMD property, and let A and B be two commuting sectorial operators on X which admit bounded H∞ functional calculi with respect to angles θ1 and θ2 satisfying θ1 + θ2 > π. It was proved by Kalton and Weis that in this case, A + B is closed. The first result of this paper is that under the same conditions, A + B actually admits a bounded H functional calculus. Our second result is that given a Banach space X and a number 1 ≦ p < ∞, the derivation operator on the vector valued Hardy space Hp (R; X) admits a bounded H functional calculus if and only if X has the analytic UMD property. This is an ‘analytic’ version of the well-known characterization of UMD by the boundedness of the H functional calculus of the derivation operator on vector valued Lp-spaces Lp (R; X) for 1 < p < ∞ (Dore-Venni, Hieber-Prüss, Prüss).

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Blower, G., ‘A multiplier characterization of analytic UMD spaces’, Studia Math. 96 (1990), 117124.CrossRefGoogle Scholar
[2]Bourgain, J., ‘Some remarks on Banach spaces in which martingale difference sequences are unconditional’, Ark. Mat. 21 (1983), 163168.Google Scholar
[3]Clément, P., de Pagter, B., Sukochev, F. A. and Witvliet, H., ‘Schauder decompositions and multiplier theorems’, Studia Math. 138 (2000), 135163.Google Scholar
[4]Coifman, R. and Weiss, G., Transference methods in analysis, CBMS Regional Conference Series in Math. 31 (Amer. Math. Soc., 1977).Google Scholar
[5]Cowling, M., ‘Harmonic analysis on semigroups’, Ann. of Math. (2) 117 (1983), 267283.Google Scholar
[6]Cowling, M., Doust, I., McIntosh, A. and Yagi, A., ‘Banach space operators with a bounded H functional calculus’, J. Austral. Math. Soc. Ser. A 60 (1996), 5189.CrossRefGoogle Scholar
[7]Da Prato, G. and Grisvard, P., ‘Sommes d'opérateurs linéaires et équations différentielles opérationnelles’, J. Math. Pures Appl. 54 (1975), 305387.Google Scholar
[8]Diestel, J. and Uhl, J. J., Vector measures, Math. Surveys Monographs 15 (Amer. Math. Soc., 1977).CrossRefGoogle Scholar
[9]Dore, G. and Venni, A., ‘On the closedness of the sum of two closed operators’, Math. Z. 196 (1987), 189201.CrossRefGoogle Scholar
[10]Dore, G. and Venni, A., ‘Some results about complex powers of closed operators’, J. Math. Anal. Appl. 149 (1990), 124136.CrossRefGoogle Scholar
[11]Garling, D. J. H., ‘On martingales with values in a complex Banach space’, Math. Proc. Cambridge Philos. Soc. 104 (1988), 399406.CrossRefGoogle Scholar
[12]Garnett, J. B., Bounded analytic functions, Pure Appl. Math. 96 (Academic Press, Boston, 1981).Google Scholar
[13]Giga, Y. and Sohr, H., ‘Abstract Lp estimates for the Cauchy problem with applications to the Navier-Stockes equation in exterior domain’, J. Funct. Anal. 102 (1991), 7294.CrossRefGoogle Scholar
[14]Guerre-Delabrière, S., ‘Some remarks on complex powers of (–Δ) and UMD spaces’, Illinois J. Math. 35 (1991), 401407.Google Scholar
[15]Haagerup, U. and Pisier, G., ‘Factorization of analytic functions with values in non-commutative L1-spaces and applications’, Canad. J. Math. 41 (1989), 882906.CrossRefGoogle Scholar
[16]Hieber, M. and Prüss, J., ‘Functional calculi for linear operators in vector-valued Lp-spaces via the transference principle’, Adv. Diff. Equations 3 (1998), 847872.Google Scholar
[17]Hoffman, K., Banach spaces of analytic functions (Prentice-Hall, 1962).Google Scholar
[18]Kalton, N. and Weis, L., ‘The H calculus and sums of closed operators’, Math. Ann. 321 (2001), 319345.Google Scholar
[19]Lancien, F., Lancien, G. and Le Merdy, C., ‘A joint functional calculus for sectorial operators with commuting resolvents’, Proc. London Math. Soc. 77 (1998), 387414.Google Scholar
[20]Le Merdy, C., ‘H functional calculus and applications to maximal regularity’, Publ. Math. UFR Sci. Tech. (Univ. Franche-Comté, Besançon, 1999), 4177.Google Scholar
[21]de Leeuw, K., ‘On L p multipliers’, Ann. of Math. (2) 81 (1965), 364379.Google Scholar
[22]Lust-Piquard, F., ‘Opérateurs de Hankel 1-sommants de λ1 (N) dans λ (N) et multiplicateurs de H1(T)’, C. R. Acad. Sci. Paris Sér I Math. 299 (1984), 915918.Google Scholar
[23]McIntosh, A., ‘Operators which have an H functional calculus’, in: Miniconference on operator theory and partial differential equations, Proc. Centre Math. Analysis 14 (ANU, Canberra, 1986) pp. 210231.Google Scholar
[24]Pisier, G., Similarity problems and completely bounded maps, Lecture Notes in Math. 618 (Springer, 1996).Google Scholar
[25]Prüss, J., Evolutionary integral equations and applications, Monographs Math. 87 (Birkhaüser, Basel, 1993).CrossRefGoogle Scholar
[26]Prüss, J. and Sohr, H., ‘On operators with bounded imaginary powers in Banach spaces’, Math. Z. 203 (1990), 429452.CrossRefGoogle Scholar
[27]Stein, E. M. and Weiss, G., Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Series 32 (Princeton Univ. Press, Princeton, NJ, 1971).Google Scholar
[28]Uiterdijk, M., Functional calculi for closed linear operators (Ph.D. Thesis, Delft University Press, 1998).Google Scholar