Article contents
T-regular probabilistic convergence spaces
Published online by Cambridge University Press: 09 April 2009
Abstract
A probabilistic convergence structure assigns a probability that a given filter converges to a given element of the space. The role of the t-norm (triangle norm) in the study of regularity of probabilistic convergence spaces is investigated. Given a probabilistic convergence space, there exists a finest T-regular space which is coarser than the given space, and is referred to as the ‘T-regular modification’. Moreover, for each probabilistic convergence space, there is a sequence of spaces, indexed by nonnegative ordinals, whose first term is the given space and whose last term is its T-regular modification. The T-regular modification is illustrated in the example involving ‘convergence with probability λ’ for several t-norms. Suitable function space structures in terms of a given t-norm are also considered.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1998
References
- 1
- Cited by