Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T22:30:23.050Z Has data issue: false hasContentIssue false

Transposable and symmetrizable matrices

Published online by Cambridge University Press:  09 April 2009

David McCarthy
Affiliation:
Department of Computer Science University of ManitobaWinnipeg, Manitoba R3T 2N2, Canada
Brendan D. McKay
Affiliation:
Department of Mathematics University of MelbourneParkville, Victoria 3052, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A square matrix A is transposable if P(RA) = (RA)T for some permutation matrices p and R, and symmetrizable if (SA)T = SA for some permutation matrix S. In this paper we find necessary and sufficient conditions on a permutation matrix P so that A is always symmetrizable if P(RA) = (RA)T for some permutation matrix R.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

Ahrens, R. W. and Szekeres, G. (1969), ‘On the combinatorial generalization of 27 lines associated with a cubic surface’, J. Austral. Math. Soc. 10, 485492.CrossRefGoogle Scholar
Bose, R. C. and Shrinkhande, S. S. (1970), ‘Graphs in which each pair of vertices is adjacent to the same number of other vertices’, Studia Sci. Math. Hungar. 5, 181195.Google Scholar
Dembowski, P. (1968), Finite geometries (Ergebnisse der Math. und ihrer Grenzgebiete 44, Springer-Verlag, Berlin, Heidelberg, New York).Google Scholar
Everett, C. J. and Metropolis, N. (1972), ‘On completely normal (0, 1)-matrices and symmetrizability’, J. Combinatorial Th. Ser. A. 13, 367373.CrossRefGoogle Scholar
Rudvalis, A. (1971), ‘(ν, κ, λ)-graphs and polarities of (ν, κ, λ)-designs’, Math. Z. 120, 224230.Google Scholar
Wallis, W. D. (1969), ‘Certain graphs arising from Hadamard matrices’, Bull. Austral. Math. Soc. 1, 325331.CrossRefGoogle Scholar