No CrossRef data available.
Published online by Cambridge University Press: 09 April 2009
The main result is that every torsion-free locally nilpotent group that is isomorphic to each of its nonnilpotent subgroups is nilpotent, that is, a torsion-free locally nilpotent group G that is not nilpotent has a non-nilpotent subgroup H that is not isomorphic to G.