Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T15:19:09.415Z Has data issue: false hasContentIssue false

A THEOREM ON DERIVATIONS ON PRIME RINGS

Published online by Cambridge University Press:  18 November 2011

KUN-SHAN LIU*
Affiliation:
Department of Mathematics, National Taiwan University, Taipei 106, Taiwan (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be a prime ring, let I be a nonzero ideal of R and let n be a fixed positive integer. We prove that if the characteristic of R is either 0 or a prime p that is greater than 2n, then an additive map d that satisfies d(xn+1)=∑ nj=0xnjd(x)xj for all xI must be a derivation.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

References

[1]Beidar, K. I., ‘On functional identities and commuting additive mappings’, Comm. Algebra 26 (1998), 18191850.Google Scholar
[2]Beidar, K. I., Brešar, M., Chebotar, M. A. and Martindale, W. S. 3rd, ‘On Herstein’s Lie map conjectures II’, J. Algebra 238 (2001), 239264.CrossRefGoogle Scholar
[3]Beidar, K. I., Martindale, W. S. 3rd and Mikhalev, A. V., Rings with Generalized Identities (Marcel Dekker, New York–Basel–Hong Kong, 1996).Google Scholar
[4]Brešar, M., ‘Jordan derivations on semiprime rings’, Proc. Amer. Math. Soc. 104 (1988), 10031006.CrossRefGoogle Scholar
[5]Brešar, M., ‘Functional identities: a survey’, Contemp. Math. 259 (1999), 93109.CrossRefGoogle Scholar
[6]Brešar, M. and Vukman, J., ‘Jordan derivations on prime rings’, Bull. Aust. Math. Soc. 37 (1988), 321322.CrossRefGoogle Scholar
[7]Bridges, D. and Bergen, J., ‘On the derivation of x n in a ring’, Proc. Amer. Math. Soc. 90 (1984), 2529.Google Scholar
[8]Chuang, C.-L., ‘GPIs having coefficients in Utumi quotient rings’, Proc. Amer. Math. Soc. 103 (1988), 723728.CrossRefGoogle Scholar
[9]Cusack, J. M., ‘Jordan derivations on rings’, Proc. Amer. Math. Soc. 53 (1975), 321324.CrossRefGoogle Scholar
[10]Fošner, M. and Vukman, J., ‘On some functional equations in rings’, Comm. Algebra 39 (2011), 26472658.CrossRefGoogle Scholar
[11]Herstein, I. N., ‘Jordan derivations of prime rings’, Proc. Amer. Math. Soc. 8 (1957), 11041110.CrossRefGoogle Scholar
[12]Herstein, I. N., Topics in Ring Theory (The University of Chicago Press, Chicago–London, 1969).Google Scholar
[13]Jacobson, N., PI-Algebras: An Introduction, Lecture Notes in Mathematics, 441 (Springer, Berlin, 1975).Google Scholar
[14]Jing, W. and Lu, S., ‘Generalized Jordan derivations on prime rings and standard operator algebras’, Taiwanese J. Math. 7 (2003), 605613.CrossRefGoogle Scholar
[15]Kharchenko, V. K., ‘Differential identities of prime rings’, Algebra Logika 17 (1978), 220238 Engl. Transl., Algebra Logic 17 (1978), 154–168.CrossRefGoogle Scholar
[16]Lee, T.-K. and Liu, K.-S., ‘Certain additive maps on m-power closed Lie ideals’, Monatsh. Math. 164 (2011), 287298.Google Scholar
[17]Martindale, W. S. 3rd, ‘Prime rings satisfying a generalized polynomial identity’, J. Algebra 12 (1969), 576584.Google Scholar
[18]Vukman, J. and Kosi-Ulbl, I., ‘A note on derivations in semiprime rings’, Int. J. Math. Math. Sci. 20 (2005), 33473350.CrossRefGoogle Scholar