Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T13:47:22.461Z Has data issue: false hasContentIssue false

TENSOR PRODUCT REPRESENTATION OF THE (PRE)DUAL OF THE Lp-SPACE OF A VECTOR MEASURE

Published online by Cambridge University Press:  09 October 2009

IRENE FERRANDO
Affiliation:
Instituto Universitario de Matemática Pura y Aplicada (IUMPA), Universidad Politécnica de Valencia, Camino de Vera, S/N, C.P. 46071, Valencia, Spain (email: [email protected])
ENRIQUE A. SÁNCHEZ PÉREZ*
Affiliation:
Instituto Universitario de Matemática Pura y Aplicada (IUMPA), Universidad Politécnica de Valencia, Camino de Vera, S/N, C.P. 46071, Valencia, Spain (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The duality properties of the integration map associated with a vector measure m are used to obtain a representation of the (pre)dual space of the space Lp(m) of p-integrable functions (where 1<p<) with respect to the measure m. For this, we provide suitable topologies for the tensor product of the space of q-integrable functions with respect to m (where p and q are conjugate real numbers) and the dual of the Banach space where m takes its values. Our main result asserts that under the assumption of compactness of the unit ball with respect to a particular topology, the space Lp(m) can be written as the dual of a suitable normed space.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2009

Footnotes

The first author acknowledges the support of the Instituto Universitario de Matemática Pura y Aplicada of the Universidad Politécnica de Valencia under grant FPI-UPV 2006–07. Research partially supported by Generalitat Valenciana (project GVPRE/2008/312), Universidad Politécnica (project PAID-06-09 Ref. 3093) and the Spanish Ministerio de Educación y Ciencia and FEDER, under project MTM2006-11690-C02-01.

References

[1]Bartle, R. G., Dunford, N. and Schwartz, J., ‘Weak compactness and vector measures’, Canad. J. Math. 7 (1955), 289305.CrossRefGoogle Scholar
[2]Bennett, C. and Sharpley, R., Interpolation of Operators (Academic Press, Boston, 1988).Google Scholar
[3]Defant, A. and Floret, K., Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, 176 (North Holland, Amsterdam, 1993).Google Scholar
[4]Diestel, J. and Uhl, J. J., Vector Measures, Mathematical Surveys, 15 (American Mathematical Society, Providence, RI, 1977).CrossRefGoogle Scholar
[5]Fernández, A., Mayoral, F., Naranjo, F., Sáez, C. and Sánchez-Pérez, E. A., ‘Spaces of p-integrable functions with respect to a vector measure’, Positivity 10 (2006), 116.CrossRefGoogle Scholar
[6]Ferrando, I. and Rodríguez, J., ‘The weak topology of L p of a vector measure’, Topology Appl. 155 (2008), 14391444.Google Scholar
[7]Lewis, D. R., ‘Integration with respect to vector measures’, Pacific J. Math. 33 (1970), 157165.CrossRefGoogle Scholar
[8]Lindenstrauss, J. and Tzafriri, L., Classical Banach Spaces II (Springer, Berlin, 1977).Google Scholar
[9]Musiał, K., ‘A Radon–Nikodym theorem for the Bartle–Dunford–Schwartz integral’, Atti Sem. Mat. Fis. Univ. Modena XLI (1993), 227233.Google Scholar
[10]Okada, S., ‘The dual space of L 1(μ) of a vector measure μ’, J. Math. Anal. Appl. 177 (1993), 583599.CrossRefGoogle Scholar
[11]Sánchez Pérez, E. A., ‘Compactness arguments for spaces of p-integrable functions with respect to a vector measure and factorization of operators through Lebesgue–Bochner spaces’, Illinois J. Math. 45 (2001), 907923.Google Scholar
[12]Sánchez Pérez, E. A., ‘Vector measure duality and tensor product representations of L p-spaces of vector measures’, Proc. Amer. Math. Soc. 132 (2004), 33193326.CrossRefGoogle Scholar
[13]Wojtaszczyk, P., Banach Spaces for Analysts (Cambridge University Press, Cambridge, 1996).Google Scholar