Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T15:48:14.597Z Has data issue: false hasContentIssue false

Symmetric square roots of the infinite identity matrix

Published online by Cambridge University Press:  09 April 2009

C. E. M. Pearce
Affiliation:
Department of Applied Mathematics, University of Adelaide, Adelaide, 5001, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some non-trivial real, symmetric square roots of the infinite identity matrix are exhibited. These may be found either from the use of involutory integral transforms and a set of real orthonormal functions or by an algebraic factorisation procedure. The two approaches are shown to be equivalent.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1976

References

Barrucand, P. (1950), ‘Sur les suites réciproques’, Comptes Rendus 230, 17271728.Google Scholar
Bochner, S. (1929), ‘Über Sturm-Liouvillesche Polynomsysteme’, Math. Z. 29, 730736.CrossRefGoogle Scholar
Cooke, R. G. (1950), Infinite Matrices and Sequence Spaces (Macmillan, London, 1950).Google Scholar
Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1953), Higher Transcendental Functions, VolsI–III (McGraw-Hill, New York, 1953).Google Scholar
Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1954), Tables of Integral Transforms, Vols I–II (McGraw-Hill, New York, 1954).Google Scholar
Fox, C. (1929), ‘A generalization of the Fourier-Bessel Integral transform’, Proc. London Math. Soc. 29, 401452.CrossRefGoogle Scholar
Guinand, A. P. (1939), ‘Finite summation formulae’, Quart. J. Math. Oxford 10, 3844.CrossRefGoogle Scholar
Guinand, A. P. (1942), ‘Simple Fourier transforms’, Quart. J. Math. Oxford 13, 153158.CrossRefGoogle Scholar
Guinand, A. P. (1950), ‘A class of Fourier kernels’, Quart. J. Math. Oxford (2) 1, 191193.CrossRefGoogle Scholar
Guinand, A. P. (1956), ‘Matrices associated with fractional Hankel and Fourier transformations’, Proc. Glasgow Math. Assoc. II, 185192.CrossRefGoogle Scholar
Hardy, G. H. (1932), ‘Summation of a series of polynomials of Laguerre’, J. London Math. Soc. 7, 138–9 and 192.CrossRefGoogle Scholar
Hardy, G. H. and Titchmarsh, E. C. (1933), ‘A class of Fourier integrals’, Proc. London Math. Soc. 35, 116155.CrossRefGoogle Scholar
Kuttner, B. (1934), ‘Divisor functions: Fourier integral transforms’, Proc. London Math. Soc. 37, 161208.CrossRefGoogle Scholar
MacDuffee, C. C. (1946), The Theory of Matrices (Chelsea, New York, 1946).Google Scholar
Meixner, J. (1941), ‘Umformung gewisser Reihen, deren Glieder Produkte hypergeometrischer Funktionen sind’, Deutsch Math. 6, 341349.Google Scholar
Perlis, S. (1952), Theory of Matrices (Addison-Wesley, Reading, Mass. 1952).Google Scholar
Smith, R. C. T. (1972), ‘An example of an orthogonal transformation of Hilbert sequence space’, J. Austral. Math. Soc. 13, 357361.CrossRefGoogle Scholar
Titchmarsh, E. C. (1937), Introduction to the Theory of Fourier Integrals (O.U.P. Oxford, 1937).Google Scholar
Tricomi, F. (1948), Equazioni Differentiali (Torino, 1948).Google Scholar
Watson, G. N. (1933a), ‘General transforms’, Proc. London. Math. Soc. 35, 156199.CrossRefGoogle Scholar
Watson, G. N. (1933b), ‘Notes on Generating Functions of polynomials: (1) Laguerre Polynomials’, J. London Math. Soc. 8, 189192.CrossRefGoogle Scholar