Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-16T17:07:40.747Z Has data issue: false hasContentIssue false

Supports of Borel measures

Published online by Cambridge University Press:  09 April 2009

Susumu Okada
Affiliation:
Department of Mathematics I.A.S. Australian National UniversityCanberra A.C.T. 2600, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a new class of topological spaces called SL-spaces, on which every Borel measure has a Lindelöf support. The class contains all metacompact spaces. However, a θ-refinable space is not necessarily an SL-space.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1979

References

Amemiya, I., Okada, S. and Okazaki, Y. (1978), ‘Pre-Radon measures on topological spaces’, Kōdai Math. J. 1, 101132.Google Scholar
Bing, R. H. (1951), ‘Metrization of topological spaces’, Canad. J. Math. 3, 175186.CrossRefGoogle Scholar
Burke, D. K. (1970), ‘On p-spaces and wΔ-spaces’, Pacific J. Math. 35, 285296.CrossRefGoogle Scholar
Gardner, R. J. (1975), ‘The regularity of Borel measures and Borel measure-compactness’, Proc. London. Math. Soc. (3) 30, 95113.CrossRefGoogle Scholar
Gruenhage, G. and Pfeffer, W. F. (1978), ‘When inner regularity of Borel measures implies regularity’, J. London Math. Soc. (2), 17, 165171.CrossRefGoogle Scholar
Halmos, P. R. (1950), Measure theory (Van Nostrand, New York).CrossRefGoogle Scholar
Tulcea, A. Ionescu (1973), ‘On pointwise convergence, compactness and equicontinuity in the lifting topology I’, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 26, 197205.CrossRefGoogle Scholar
Lutzer, D. J. (1972), ‘Another property of the Sorgenfrrey line’, Compositio Math. 24, 359363.Google Scholar
Michael, E. (1955), ‘Point finite and locally finite coverings’, Canad. J. Math. 7, 275279.CrossRefGoogle Scholar
Moran, W. (1968), Measures on completely regular spaces (Ph.D. thesis, The University of Sheffield).Google Scholar
Moran, W. (1970), ‘Measures on metacompact spaces’, Proc. London. Math. Soc. (3) 20, 507524.CrossRefGoogle Scholar
Rajput, B. S. and Vakhania, N. N. (1977), ‘On the support of Gaussian probability measures on locally convex topological vector spaces’, Multivariate Analysis IV (Proc. the Fourth International Symposium on Multivariete Analysis, North-Holland, Amsterdam), pp. 297309.Google Scholar
Schwarz, L. (1978), Radon measures on arbitary topological spaces and cylindrical measures (Oxford Univ. Press).Google Scholar
Steen, L. A. and Seebach, J. A. Jr, (1970), Counterexamples in topology (Holt, Rinehart and Winston, New York).Google Scholar
Worrel, J. M. Jr, and Wicke, H. H. (1965), ‘Characterizations of developable topological spaces’, Canad. J. Math. 17, 820830.CrossRefGoogle Scholar