Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T23:00:19.690Z Has data issue: false hasContentIssue false

STATES ON THE CUNTZ ALGEBRAS AND p-ADIC RANDOM WALKS

Published online by Cambridge University Press:  19 July 2011

P. E. T. JORGENSEN
Affiliation:
Department of Mathematics, University of Iowa, Iowa City, IA 52224, USA (email: [email protected])
A. M. PAOLUCCI*
Affiliation:
Max–Planck–Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study Markov measures and p-adic random walks with the use of states on the Cuntz algebras Op. Via the Gelfand–Naimark–Segal construction, these come from families of representations of Op. We prove that these representations reflect selfsimilarity especially well. In this paper, we consider a Cuntz–Krieger type algebra where the adjacency matrix depends on a parameter q ( q=1 is the case of Cuntz–Krieger algebra). This is an ongoing work generalizing a construction of certain measures associated to random walks on graphs.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

Footnotes

The first author (PJ) thanks the US NSF for partial support.

References

[1]Albeverio, S., Jorgensen, P. E. T. and Paolucci, A. M., ‘Multiresolution wavelets analysis of integer scale Bessel functions’, J. Math. Phys. 48 (2007), 073516.CrossRefGoogle Scholar
[2]Bratteli, O. and Jorgensen, P. E. T., ‘Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of scale N’, Integral Equations Operator Theory 28 (1997), 382443.CrossRefGoogle Scholar
[3]Bratteli, O. and Jorgensen, P. E. T., ‘Iterated function systems and permutation representations of the Cuntz algebra’, Mem. Amer. Math. Soc. 139(663) (1999).Google Scholar
[4]Bratteli, O. and Jorgensen, P. E. T., ‘Wavelets through a looking glass’, in: Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, MA, 2002), p. xxii+398, ISBN:0-8176-4280-3.Google Scholar
[5]Cuntz, J., ‘Simple C *-algebras generated by isometries’, Comm. Math. Phys. 56 (1977), 173185.CrossRefGoogle Scholar
[6]Cuntz, J., ‘A class of C -algebras and topological Markov chains’, Invent. Math. 56 (1980), 251268.CrossRefGoogle Scholar
[7]Daubechies, I., Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, 61 (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992).CrossRefGoogle Scholar
[8]Davidson, K. R. and Pitts, D. R., ‘Invariant subspaces and hyper-reflexivity for free semigroup algebras’, Proc. Lond. Math. Soc. 78 (1999), 401430.CrossRefGoogle Scholar
[9]Dutkay, D. E. and Jorgensen, P. E. T., ‘Harmonic analysis and dynamics for affine iterated function systems’, Houston J. Math. 33(3) (2007), 877905.Google Scholar
[10]Dutkay, D. E. and Jorgensen, P. E. T., ‘Martingales, endomorphisms, and covariant systems of operators in Hilbert space’, J. Operator Theory 58(2) (2007), 269310.Google Scholar
[11]Dutkay, D. E. and Jorgensen, P. E. T., A Duality Approach to Representations of Baumslag–Solitar Groups, Group Representations, Ergodic Theory, and Mathematical Physics: A Tribute to George W. Mackey, Contemporary Mathematics, 449 (American Mathematical Society, Providence, RI, 2008), pp. 99127.CrossRefGoogle Scholar
[12]Gasper, G. and Rahman, M., Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, 35 (Cambridge University Press, Cambridge, 1990).Google Scholar
[13]Glimm, J., ‘Type I C *-algebras’, Ann. of Math. (2) 73 (1961), 572612.CrossRefGoogle Scholar
[14]Jessen, B. and Wintner, A., ‘Distribution functions and the Riemann zeta function’, Trans. Amer. Math. Soc. 38 (1935), 4888.CrossRefGoogle Scholar
[15]Jorgensen, P. E. T., ‘Measures in wavelet decompositions’, Adv. Appl. Math. 34 (2005), 561590.CrossRefGoogle Scholar
[16]Jorgensen, P. E. T., Analysis and Probability, Wavelets, Signals, Fractals, Graduate Texts in Mathematics, 234 (Springer, New York, 2006).Google Scholar
[17]Jorgensen, P. E. T., Certain Representations of the Cuntz Relations, and a Question on Wavelets Decompositions, Contemporary Mathematics, 414 (American Mathematical Society, Providence, RI, 2006), pp. 165188.Google Scholar
[18]Jorgensen, P. E. T., Frame Analysis and Approximation in Reproducing Kernel Hilbert Spaces, Contemporary Mathematics, 451 (American Mathematical Society, Providence, RI, 2008), pp. 151169.Google Scholar
[19]Jorgensen, P. E. T. and Paolucci, A. M., ‘Markov measures and extended zeta functions’, submitted.Google Scholar
[20]Jorgensen, P. E. T. and Paolucci, A. M., ‘Wavelets in mathematical physics: q-oscillators’, J. Phys. A: Math. Gen. 36 (2003), 64836494.CrossRefGoogle Scholar
[21]Jorgensen, P. E. T., Proskurin, D. P. and Samoĭlenko, Y. S., ‘Generalized canonical commutation relations: representations and stability of universal enveloping C*-algebra’, in: Symmetry in Nonlinear Mathematical Physics, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 2 (Nats̄ıonal. Akad. Nauk Ukraïıni Īnst. Mat., Kiev, 2002), pp. 456460.Google Scholar
[22]Jorgensen, P. E. T., Schmitt, L. M. and Werner, R. F., ‘q-canonical commutation relations and stability of the Cuntz algebra’, Pacific J. Math. 165 (1994), 131151.CrossRefGoogle Scholar
[23]Jorgensen, P. E. T. and Werner, R. F., ‘Coherent states of the q-canonical commutation relations’, Comm. Math. Phys. 164 (1994), 455471.CrossRefGoogle Scholar
[24]Lance, E. C. and Paolucci, A. M., ‘Conjugation in braided C -categories and orthogonal quantum groups’, J. Math. Phys. 41(4) (2000), 23832394.CrossRefGoogle Scholar
[25]Luef, F. and Manin, Y. I., ‘Quantum theta functions and Gabor frames for modulation spaces’, Lett. Math. Phys. 88 (2009), 131161.CrossRefGoogle Scholar
[26]Manin, Y. I. and Marcolli, M., Error-correcting codes and phase transitions’, Math. Comput. Sci., to appear.Google Scholar
[27]Marcolli, M., Arithmetic Noncommutative Geometry, University Lecture Series, 36 (American Mathematical Society, Providence, RI, 2005).CrossRefGoogle Scholar
[28]Marcolli, M., ‘Modular curves, C -algebras, and chaotic cosmology’, in: Frontiers in Number Theory, Physics and Geometry, II (Springer, Berlin, 2006), pp. 361372.Google Scholar
[29]Marcolli, M. and Paolucci, A. M., ‘Cuntz–Krieger algebras and wavelets on fractals’, Complex Anal. Operator Theory, doi:10.1007/s11785-009-0044-y.CrossRefGoogle Scholar
[30]Raeburn, I., Graph Algebras, CBMS Regional Conference Series in Mathematics, 103 (American Mathematical Society, Providence, RI, 2005).CrossRefGoogle Scholar