Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T11:31:32.380Z Has data issue: false hasContentIssue false

Some varieties of groups

Published online by Cambridge University Press:  09 April 2009

M. F. Newman
Affiliation:
Australian National UniversityCanberra, ACT, 2600
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For positive integers n, c the class of groups all of whose n-generator subgroups are nilpotent of class (at most) c is a variety, here denoted [nc]. Hanna Neumann in her book ([15] pp. 93–98) reported on the first stage of the investigation of these varieties. The main result was that [nc] is nilpotent if and only if cn ≧ 2 ([15] 34.33 and 34.54).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1973

References

[1]Bachmuth, S. and Mochizuki, H. Y., ‘Third Engel groups and the Macdonald-Neumann conjecture’, Bull. Austral. Math. Soc. 5 (1971), 379386; MR to appear.CrossRefGoogle Scholar
[2]Birkhoff, Garrett, Lattice Theory, Third (New) Edition (Amer. Math. Soc. Colloq. Publ., vol. 25. Amer. Math. Soc., Providence, 1967); MR 37 # 2638.Google Scholar
[3]Bryant, Roger M., ‘On some varieties of groups’, Bull. London. Math. Soc. 1 (1969), 6064; MR 39 # 2848.CrossRefGoogle Scholar
[4]Groves, J. R. J., ‘Varieties of soluble groups and a dichotomy of P. Hall’, Bull. Austral. Math. Soc. 5 (1971), 391410; MR to appear.CrossRefGoogle Scholar
[5]Gupta, Narain, ‘Third-Engel 2 groups are soluble’, Canad. Math. Bull. 15 (1972), 523524; MR to appear.CrossRefGoogle Scholar
[6]Gupta, C. K., Gupta, N. D. and Newman, M. F., ‘Some finite nilpotent p-groups’, J. Austral. Math. Soc. 9 (1969), 278288; MR 39 # 2877.CrossRefGoogle Scholar
[7]Heineken, H., ‘Bounds for the nilpotency class of a group’, J. London. Math. Soc. 37 (1962), 456458; MR 27 # 1512.CrossRefGoogle Scholar
[8]Huppert, Bertram, Endliche Gruppen I, (Die Grundlehren der mathematischen Wissenschaften, Band 134. Springer-Verlag, Berlin, Heidelberg, New York, 1967); MR 37 # 302.CrossRefGoogle Scholar
[9]Kappe, Wolfagng, ‘Die A-Norm einer Gruppe’, Illinois J. Math. 5 (1961), 187197; MR 22 # 12137.CrossRefGoogle Scholar
[10]Kovács, L. G. and Newman, M. F., ‘On non-Cross varieties of groups’, J. Austral. Math. Soc. 12 (1971), 129144; MR 45 # 1966.CrossRefGoogle Scholar
[11]Lamberth, Walter J., Automatic collection of group commutators and expressions, M.Sc. Thesis, (Australian National University, 1968).Google Scholar
[12]Liebeck, Hans, ‘Concerning nilpotent wreath products’, Proc. Cambridge Philos. Soc. 58 (1962), 443451; MR 25 # 3087.CrossRefGoogle Scholar
[13]Macdonald, I. D. and Neumann, B. H., ‘A third-Engel 5-group’, J. Austral. Math. Soc. 7 (1967), 555569; MR 36 # 5223.CrossRefGoogle Scholar
[14]Neumann, B. H., ‘Ascending derived series’, Compositio Math. 13 (1956), 4764; MR 19, 632.Google Scholar
[15]Neumann, Hanna, Varieties of groups, (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37. Springer-Verlag, Berlin, Heidelberg, New York, 1967); MR 35 # 6734.CrossRefGoogle Scholar
[16]Ward, M. A., ‘Basic commutators’, Philos. Trans. Roy. Soc. London Ser. A. 264 (1969), 343412; MR 40 # 4379.Google Scholar
[17]Gupta, Narain, Levin, Frank and Rhemtulla, Akbar, ‘Chains of varieties’, Canad. J. Math., submitted.Google Scholar
[18]Robinson, Derek J. S., Finiteness conditions and generalized soluble groups, Part 2, (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 63. Springer-Verlag, Berlin, Heidelberg. New York, 1972); MR to appear.CrossRefGoogle Scholar