Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T05:20:45.676Z Has data issue: false hasContentIssue false

Some thin Lie algebras related to Albert-Frank algebras and algebras of maximal class

Published online by Cambridge University Press:  09 April 2009

S. Mattarei
Affiliation:
Dipartimento di Matematica Università degli Studi di Trento via Sommarive 14 I-38050 Povo (Trento) Italy e-mail: [email protected] e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate a class of infinite-dimensional, modular, graded Lie algebra in which the homogeneous components have dimension at most two. A subclass of these algebras can be obtained via a twisted loop algebra construction from certain finite-dimensional, simple Lie algebras of Albert-Frank type.

Another subclass of these algebras is strictly related to certain graded Lie algebras of maximal class, and exhibits a wide range of behaviours.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Albert, A. A. and Frank, M. S., ‘Simple Lie algebras of characteristic p’, Univ. e Politec. Torino. Rend. Sem. Mat. 14 (19541955), 117139.Google Scholar
[2]Avitabile, M. and Jurman, G., ‘Diamonds in thin Lie algebras’, Technical Report.Google Scholar
[3]Block, R., ‘New simple Lie algebras of prime characteristic’, Trans. Amer. Math. Soc. 89 (1958), 421449.CrossRefGoogle Scholar
[4]Brandl, R., ‘The Dilworth number of subgroup lattices’, Arch. Math. (Basel) 50 (1988), 502510.CrossRefGoogle Scholar
[5]Caranti, A., ‘Presenting the graded Lie algebra associated to the Nottingham group’, J. Algebera 198 (1997), 266289.Google Scholar
[6]Caranti, A. and Jurman, G., ‘Quotients of maximal class of thin Lie algebras. The odd characteristic case’, Comm. Algebra (1999), to appear.CrossRefGoogle Scholar
[7]Caranti, A. and Mattarei, S., ‘Gradings of non-graded Hamiltonian Lie algebras’, Techinical Report.Google Scholar
[8]Catanti, A., Mattarei, S. and Newman, M. F., ‘Graded Lie algebras of maximal class’, Trans. Amer. Math. Soc. 349. (1997), 40214051.Google Scholar
[9]Caranti, A.Mattarei, S. and Newman, M. F., ‘Graded Lie algebras of maximal class’, Trans. Amer. Math. Soc. 349 (1997), 40214051.CrossRefGoogle Scholar
[10]Caranti, A. and Newman, M. F., ‘Graded Lie algebras of maximal class II’, Technical Report.Google Scholar
[11]Garland, H., ‘The arithmetic theory of loop groups’, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 5136.CrossRefGoogle Scholar
[12]Havas, G., Newman, M. F. and O'Brien, E. A., ‘ANU p-Quotient Program (version 1.4), written in C, available as a share library with GAP and as part of Magma, or from http://wwwmaths.anu.edu.au/services/ftp.html’, (School of Mathematical sciences, Australian National University, Canberra, 1997).Google Scholar
[13]Huppert, B., Endliche Gruppen.I, Die Grundlehren der mathematischen Wissenschaften, Band 134 (Springer, Berlin, 1967).Google Scholar
[14]Jacobson, N., Lie algebras, (Dover Publications Inc., New York, 1979), republication of the 1962 original).Google Scholar
[15]Jurman, G., ‘Graded Lie algebras of maximal class. III’, Technical Report.Google Scholar
[16]Jurman, G., ‘Quotients of maximal class of thin Lie algebras. The case of characteristic two’, Comm. Algebra (1999), to appear.CrossRefGoogle Scholar
[17]Kostrikin, A. I., ‘The beginnings of modular Lie algebra theory’, in: Group theory, algebra, and number theory (Saarbrücken, 1993) (de Gruyter, Berlin, 1996) pp. 1352.CrossRefGoogle Scholar
[18]Leedham-Green, C. R., ‘The structure of finite p-groups’, J. London Math. Soc. 50 (1994), 4967.CrossRefGoogle Scholar
[19]Leedham-Green, C. R. and Newman, M. F., ‘Space groups and groups of prime-power order. I’, Arch. Math. (Basel) 35 (1980), 193202.Google Scholar
[20]Leedham, C. R., Plesken, W. and Klaas, G., Pro-p-groups of finite width, Lecture Notes in Math. 1674 (Springer, Berlin, 1997).Google Scholar
[21]Lucas, È., ‘Sur les congruences des nombres eulériens et des coefficients différentiles des fonctions trigonomètriques, suivant un module premie’, Bull. Soc. Math. France 6 (1878), 4954.Google Scholar
[22]Mattarei, S., ‘Some thin pro-p-groups’, J. Algebra, to appear.Google Scholar
[23]Neumann, B. H., ‘Some remarks on infinite groups’, J. London Math. Soc. 12 (1937), 120127.Google Scholar
[24]Robinson, D. J. S., A course in the theory of groups (Springer, New York, 1982).CrossRefGoogle Scholar
[25]Shalev, A., ‘The structure of finite p-groups: effective proof of the coclass conjectures’, Invent. Math. 115 (1994), 315345.Google Scholar
[26]Shalev, A. and Zelmanov, E. I., ‘Narrow Lie algebras I: a coclass theory and a characterization of the Witt algebra’, J. Algebra 189 (1997), 294331.Google Scholar
[27]Strade, H. and Farnsteiner, R., Modular Lie algebras and their representations, Monographs Textbooks Pure Appl. Mathematics 166 (Marcel Dekker, New York, 1988).Google Scholar