No CrossRef data available.
Article contents
SOME REFINED RESULTS ON THE MIXED LITTLEWOOD CONJECTURE FOR PSEUDO-ABSOLUTE VALUES
Published online by Cambridge University Press: 22 August 2018
Abstract
In this paper, we study the mixed Littlewood conjecture with pseudo-absolute values. For any pseudo-absolute-value sequence ${\mathcal{D}}$, we obtain a sharp criterion such that for almost every
$\unicode[STIX]{x1D6FC}$ the inequality
$$\begin{eqnarray}|n|_{{\mathcal{D}}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$
$(n,p)\in \mathbb{N}\times \mathbb{Z}$ for a certain one-parameter family of
$\unicode[STIX]{x1D713}$. Also, under a minor condition on pseudo-absolute-value sequences
${\mathcal{D}}_{1},{\mathcal{D}}_{2},\ldots ,{\mathcal{D}}_{k}$, we obtain a sharp criterion on a general sequence
$\unicode[STIX]{x1D713}(n)$ such that for almost every
$\unicode[STIX]{x1D6FC}$ the inequality
$$\begin{eqnarray}|n|_{{\mathcal{D}}_{1}}|n|_{{\mathcal{D}}_{2}}\cdots |n|_{{\mathcal{D}}_{k}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$
$(n,p)\in \mathbb{N}\times \mathbb{Z}$.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2018 Australian Mathematical Publishing Association Inc.
Footnotes
The author was supported by the AMS-Simons Travel Grant 2016–2018 and NSF DMS-1700314. This research was also partially supported by NSF DMS-1401204.