No CrossRef data available.
Published online by Cambridge University Press: 09 April 2009
In this paper we study some properties of vector measures with values in various topological vector spaces. As a matter of fact, we give a necessary condition implying the Pettis integrability of a function f: S → E, where S is a set and E a locally convex space. Furthermore, we prove an iff condition under which (Q, E) has the Pettis property, for an algebra Q and a sequentially complete topological vector space E. An approximating theorem concerning vector measures taking values in a Fréchet space is also given.